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1 I - INTRODUCTION 

$1 The Foucault  knife-edge test  method i s  a widely  used method of 
4 testing  astronomical  mirrors and other  high-quality  optical systems  of 

large  aperture  during  the  final  figuring. It would appear t o  be espe- 
c ia l ly   sui ted  for   tes t ing  the  mirror   of  a large  telescope  in  orbit  
because  of i t s  sens i t iv i ty  and minimal equipment requirements and because 
i t s  essent ia l  requirement  of a perfectly uniform t e s t  beam can be satis- 
f i e d   i n  space by pointing  the  telescope at a star. Even if  the  telescope 
is f r e e  of imperfections when first bu i l t ,  temperature  variations and 
structural   relaxation or creep may subsequently  introduce  distortions 
so that some such method for  occasionally  testing  the  telescope  optics 
i s  desirable. If the  primary  mirror is adjustable, it would be espe- 
c ia l ly   desirable  that t h e   t e s t  method be capable  of  providing  quantita- 
tive  information on the  dis tor t ion that must be corrected. 

This  problem of the  quantitative  determination of the  dis tor t ion 
of the  mirror by means of the  Foucault  knife-edge t e s t  i s  considered 
here. The analysis i s  based on the work of Linfoot  (Ref. l), who derived 
expressions  for  the  distribution of the l igh t   in tens i ty  seen i n   t h e  
Jsinfe-edge tes t   for   both  perfect  and imperfect  mirrors as a function  of 
the  mirror  surface  distortion. For a uniformly reflecting  mirror w i t h  
small surface  imperfections,  the change in the light distribution from 
t h a t  of a perfect  mirror i s  given by a linear  integral  expression  involv- 
ing  the phase d is tor t ion   o f . the  converging wave front  at the  mirror. 
The solution  for this phase distortion, which i s  d i r ec t ly   r e l a t ed   t o   t he  
mirror  surface  distortion,  involves the inversion of this integral  
expression. 

Thus, the  problem of the  determination of the  mirror  imperfections 
from the  knife-edge  observations  reduces t o   t h e  problem of solving an 
integral  equation.  In  the work herein  reported,  various methods of 
solution were studied.  Five  function methods involving power ser ies  and 
Fourier  series, a collocation  solution, two iteration  solutions,  and an 
inversion  integral  solution  are  presented and compared for  selected 
examples. Three  of the  more suitable methods were applied t o   t h e  Casse- 
grain  type of mirror , or  mirror with a central  hole. In addi t ion  to  
describing and discussing  the  advantages and disadvantages  of  these 
various methods, t h i s  report  also  presents some nonlinearized  calcula- 
t ions  of  the  knife-edge  test   intensit ies  for  distortions  of  increasing 
size,   in  order  to  help  the  user  estimate  the  l imitations of the  l inear ized 
solutions. 
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I1 - DERIVATION OF INTEGRAL EQUATIONS 

The opt ica l  arrangement i n   t h e  knife-edge test  i s  s h m  i n   t h e  
sketch,  Fig. 2-1. The knife-edge  passes  through  the  focus of the mirror 
and the lens  focuses  the mirror surface onto  the image plane  of the lens. 
This image plane may be the  location of the  observers eye or may be the  
location  of a group of light sensors.  Linfoot (Ref . 1) showed that when 
the  observer  looks  past  the  knife-edge taward the mirror, the observed 
distribution  of light intensi ty  at the  mirror along any l i n e  normal t o  
the knife-edge depends only on the  mirror figure along that l ine.  Thus, 
with the  knife-edge normal to  the  plane  of  the sketch i n  Fig. 2-1, only 
a l i n e  of  sensors  in, or pmal le l   to ,   the   p lane  of the  sketch i s  needed 
i n   t h e  image plane  of  the  lens. To completely t e s t   t h e  mirror, several  
l i nes  of sensors would be  needed. Katzoff (Ref. 2 )  discusses  possible 
asrangements of the  sensors  for a complete t e s t  of  the  mirror. He also 
examines the problem of  precise  location  of  the  knife-edge when the 
mirror has imperfections. 

Mirror image  plane 

\ /  Knife-edge 

Fig. 2-2. Definition  of x fo r  Lines on the  Mirror 
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1' l e t  x be the  distance  along this line.   Let x = -1 and x = +1 represent 

Since the   l i gh t   i n t ens i ty  along a l ine  across   the mirror normal t o  
the knife-edge depends only on the shape  of the mirror along that l i ne ,  

the  points where 
whether t he   l i ne  
Linfoot (Ref 1) 

the  l ine  crosses  the edges  of the mirror, regardless of 
i s  a diameter or a chord of the mirror (see  Fig.  2-2). 
derived  the  following  basic  equation  for D(x), the 

2~cD(x) = rcE(x) + i 
t - x  

complex displacement a t  the image plane  of  the  lens, where E(x) i s  the  
complex displacement of the converging wave front   just  as it leaves  the 
mirror, and t i s  a running  vwiable  corresponding  to  the  variable x. 
The observed distribution of l ight  intensity  along  the  l ine i s  

I (x)  and D(x)  are  functions  of x in  the  sense  that  the  observer  looking 
past  the  knife-edge  sees  I(x)  as  the  apparent  brightness  at  point  x. 

The conditions or res t r ic t ions  on Eqs. (2-1) and (2-2) are  (see 
p. 138, Ref 1): 

(a) the diameter  of the  mirror subtends  only a s m a l l  angle 

(b )  the  errors of figure of the mirror , though they may 
at  the  focal  point ; 

amount t o  many wavelengths, are  small compared to   t he  
focal  distance; 

and 

a t   t h e  edge of the  mirror. 

(c)   the   errors  of slope  in  the  mirror  surface  are s m a l l ;  

(d) the  function  E(x) i s  continuous and differentiable except 

Under these  conditions,  the  equations  are  valid  for  mirrors  of  arbitrary 
edge contour,  including  central  piercings as for a Cassegrain  arrangement, 
and  of var iable   ref lect ing power. 

The function  E(x) can be  taken i n   t h e  form 

t ions on the  surface  of  the  mirror; A i s  the wavelength  of l i gh t .  For 
+.he perfect mirror, q(x) = 0 and E(x) = 1, so that 
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2rcD0(x) = rc + i log  ( 5 ) , perfect  mirror, 

and 

Io = 4rc21DO(x)I2 = rc2 + log2( '">. - l < x < l ,  
l + x  

where the  subscript  o indicates  the  perfect  mirror. For the  case of the 
distorted  mirror,  take 

q(x) = - d d / A  

where ~ ( x )  i s  the phase error ,  in wavelengths, on the  converging wave 
front where it leaves  the  mirror. It i s  twice  the  error,   in wavelengths 
of the  mirror  surface at that location. The phase error  q(x) is posit ive 
when the  imperfection on the  mirror  surface i s  raised toward the  observer. 

If Eq. (2-6) fo r  E(x) i s  subst i tuted  into Eqs. (2-1) and (2-2),  then 

and 

2rcD(x) = 31 [cos 2317 (x) + i sin 231q(x)J 

.L 
+ cos  2rcv(t)dt -L s i n   2 q ( t ) d t  

t - x  t - x  

- 231 cos 2rcq(x) I' "1," dt 

If ~ ( x )  i s  suff ic ient ly  small so tha t  
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# 1 then Eq. (2-8) c& be linearized approximately t o  give 

This i s  the  basic  linear  integral  equation  for ~ ( x ) .  Take 

f (X) = ~ K ~ V ( X ) ,  F(x) = I - Io 

so that the  basic Eq. (2-9) i s  

F(x) = f (x)   log  

For some of the  solutions  to be  given l a t e r   i n  this report, it is  
preferable to   wr i t e  Eq. (2-11) in the form 

When the  mirror 
of Eq. (2-8)  gives 

where 

(2-10) 

(2-11) 

(2-12) 

has a central  hole  of  radius R, the  l inearization 

F(x) = I - Io = f ( X )  
log 1 l+x x-R I l - x x + R  

I, = K2 + log2 l - x x + R  (2-14) 

f o r  any diameter. Hawever, as in Fig. 2-2, the   l ine  on the mirror may 
be  any chord so tha t  R i n  Eq. (2-13) may vary from R = 0, the  case of 
Eq. (2-11) when the  chord  line does not cross the  hole, up t o  R = radius 
of the  hole. Thus, i n  Eq. (2-13), x = -1 and x = 1 refe r   t o   t he  edges 
of the  mirror  for any l i ne  and x = SI, with R properly  scaled t o   t h e  x 
length ,   re fe r   to   the  edges of the  hole if the  line  crosses  the  hole 
(see  Fig. 2-3) . 
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Fig. 2-3. Knife-Edge Test  Lines for  Cassegrain 
Mirror System 

For l a t e r  use, Eq. (2-13)  can  be writ ten 

F(x) = -I - 

i n   t h e  form 

d t  (2-15) 

where L2 consists of the two l i n e  segments, -1.0 t o  -R and R t o  1.0. 

The problem now i s  reduced to  solving  these  integral  equations  for 
f (x)  or ~ ( x ) .  Since l i t t l e  can be done about  solving  the  nonlinear 
in tegra l  Eq. (2-8) for   q(x) ,   the  work of this report i s  concentrated on 
solving  the  l inear  integral  Eqs. (2-11) or (2-12) and (2-13) or (2-15) 
for f (x). Some results  for  the  exact Eq. (2-8),  obtained by numerical 
integration,  are  given  in Sec. X I  f o r  assumed values of ~ ( x ) .  Before 
presenting  the  various methods of solving  the  linear  equations, some 
discussion of the  general  restraint  conditions, homogeneous solutions, 
numerical   integration  difficult ies and computer l imitations  for  these 
equations i s  given in the  following  section. 
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I11 - RESTRAINT CONDITIONS ON SOLUTION O F  ME LINEAR EQUATIONS 

There are  several   factors that must be  considered i n  attempting t o  
solve  the  integra3  equations (2-31) , (2-12),  (2-13), and (2-15) 
The problems  of (a) point values of F(x) ,  (b)  numerical  integration, 
(e)  function methods vith numerical  integration,  (d)  discontinuities at 
the edges  of the mirror, (e) homogeneous solutions , ( f )   r i g i d  body 
rotations of the mirror and  (g) cumputer limitations  are  described  belov, 

(a) Point values of F(x)  Since  F(x) = I (x) - &,(x) , the change 
in light intensi ty  due t o  a distortion in the mirror and must be  obtained 
by sensors from the  knife-edge  test, it  ill be known only at selected 
points on selected  l ines  on the mirror  (unless it i s  measuredwith a 
scanning  sensor) Thus, v i t h  F(x) given at  points  Ody,  the  equations 
m u s t  be solved  numericaUy.  Regardless  of what method of  solution i s  
used,  numerical  integrations vi11 have t o  be made, e i ther   direct ly  or 
indirectly.  Since  these  equations may be singula, with  the  integrand 
becoming i n f i n i t e  when the  integration  vxriable t crosses  x,  there may 
be d i f f icu l t ies  with the numerical  integration. As the particular type 
of  numerical  integration will depend upon the method of solution,  the 
specific problerns vi th  the  integration  are  discussed  later,  where the 
different methods of solution  are  described, Some general comments  on 
numerical  integration  are  given in item (b), 

(b) Numerical integration. In the  numerical  integration  for  the 
vmious methods of  solution  described  later  in this report, it trill be 
assumed that readings of F(x) from the  knife-edge  test-will  be at equally 
spaced  points i n  a l i n e  across  the mirror, For this case  of  equal 
in te rvds ,   the  Newton-Cotes quadrature  formulas  (Ref. 3, p. 3 9 )  are 
probably  the most suitable  for the numerical  integration. These formulas 
give  weight  coefficients H j ,  or the Cotes numbers, t o  multiply  the 
ordinates  of  the  integrand fo-r the integration. Thus 

The two-point  formula i s  the same as the  trapezoid  rule,  the  three-point 
formula i s  Simpsonps  rule. The H j  numbers  up t o  a 21 point  rule are 
given on pages 536-538 in Ref- 3. The error in the numerical  integration 
using  these  formulas i s  propo;.tional t o  a certain  derivative of the 
integrand at some point, For example, the  error  in  the  trapezoid  rule 
i s  proportional t o  the second derivative;  in  SimpsonPs  rule,  to  the 
fourth  derivative; in the  nine-point  rule, t o  the  tenth  derivative, 
As  pointed  out by Kopal, (Ref, 3), vbether a  higher-order  rule is  bet ter  
than a lover-order  &e- depends upon the 
This factor i s  important in the  solution 
t ions,   In  some of the methods discussed 

behavior of the derivatives. 
of the  subject  integral  equa- 
l a t e r  , it ~ril1 be shown that 



the  higher  order  derivatives  involved i n  the numerical. integration  errors 
m e  extremely large and may be i n f i n i t e   a t  some points.  This  results 
in   the  t rapezoid  rule   giving  the  best   resul ts   in  some methods of solution. 

(c)  Function methods vith numerical  integration. The function 
method of solution assumes that   the  unknown function f (x) can  be  approx- 
imated by a finite sum of knmm f'mctions  vith unknmm multiplying 
constants, as 

N 

The pi (x)  functions may be xi terms, t r i g m e t r i c  terms  or any selected 
group  of functions. The constants  are t o  be  determined  for  the 
solution. The determination  of  these  constants normaUy involves  the 
evaluation of certain integrals  containing F(x) and pi  (x)  In  the 
present  case,  these  integrations must be  performed  numerically.  This 
introduces a second  approximation in to   the  f'unction  solution i n  Eq. (3-2). 
Not only is there a f in i te   nmber  of the ai, they  are also approximate 
and no better  than the numerical  integration  used t o  evaluate them. It 
is evident that if  the numerical  integration i s  quite  accurate,  then 
the  accuracy in f (x )  in Eqo (3-2) will be limited  only by the number 
and type of selected  functions pi (x) e Since  the  larger  the number of 
points  used in the  integration  the  better  the  results are, as many points 
as  possible  should  be used. The  number of points  used depends not  only 
on the  behavior of f (x)   but  a lso on the  selected  pi(x). If the  p,(x) 
are  cyclic, more points w i l l  be needed i f  the number of terms i n  Eq. 
(3-2) i s  large,  (po 408, Ref, 3) .  In   fact ,   the  number of points  in  the 
numerical  integration should be at least   equal   to   the number of constants 
i n  Eq. (3-2).  Preferably,  the number of points  should  be many times  the 
number of constants  for  cyclic  pi(x),  but from p r a c t i c a l   l h i t a t i o n s  of 
the computer, twice  as many points  as  constants seems t o  be  a good  com- 
promise. I n  order t o  compare the  various methods discussed  later,  the 
number of points on the  mirror f o r  all numerical  integrations  has been 
selected  as 

40 equal  interval-s,  41points  for 
mirror  without  hole (3-3) 

40 equal  intervals, 20 on each side, 
42 points for mirror with  hole (3-4) 

The  number of constants  used in the  function methods Of Solution  has 
been selected as 

20 cons~ants  for  function methods. (3-5) 
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Further  discussion of the numeric& integration in the  function methods 
trill be given for  each of the  particular  function methods. 

(d)  Discontinuities  at edges of mirror. In Eqs.  (2- l l )  and (2-13) 
the  log terms become in f in i t e  at the edges  of the  mirror and the edges 
of the  central  hole. This may  mean that f (x) must be zero at the edges 
or F(x) must be in f in i t e  at the edges.  Since  F(x) i s  a change i n   l i g h t  
intensity,  it is not   in f in i te  at the edges. However, since  the mirror 
may have a dis tor t ion  a t   the  edge, it i s  not  desirable  to make f ( x )  = 0 
at the edges. Thus, these  factors must be  considered in the  solutions 
so as   no t   to   res t r ic t   the   so lu t ions  more than  necessary. It should  be 
noted  that   this problem can be  avoided i n  those methods which make use 
O f  E ~ s .  (2-12) and (2-15). 

(e) Homogeneous solutions . It i s  evident from Eqs . (2-12) and 
(2-15) tha t  

with C 1  a constant, makes F(x) = 0 so t h a t   t h i s  f (x) i s  a homogeneous 
solution of the  equations. This solution  represents a uniform change in 
phase  of the  entire wave f'ront and has no physical  significance as the 
reference  phase i s  a r b i t r a y .  However, the method of solution must 
include a reference  point or condition  for  this  constant. 

It can  be ver i f ied   tha t  Eq. (2-15) for  the  hole  case  has  another 
homogeneous solution 

f (x)  = - c2 3 (3-7) 
X 

vhich makes F(x) = 0. This is a possible  physical  distortion of the 
Cassegrah  type mirror that   the  knife-edge  test  i s  unable t o  detect,  as 
no change in light intensi ty  is produced  by this   dis tor t ion.  The evalu- 
ation of C2 by using  restraint  conditions on the mirror i s  considered 
in  Section X. 

(f)  Rigid body rotation of mirror. I n  Eq. (2-12), it is  easy t o  
show tha t  

f(x) = C s  gives  F(x) = - 2Cs 3 (3-8) 

vhich  indicates  that a uniform change i n   t h e  light intensity  implies a 
rotation of the   l ine  on the mirror being  observed. However, since  the 
reference  scale  for  the  l ight  intensity may be arbitrary,   the  rotation 
i n  Eq. (3-8) may be an appaent   r ig id  body rotation of the  entire  mirror 
and not a rea l   d i s tor t ion  of the mirror. If a group of para3lel   l ines  
on the mirror d l  gave the same rotation,  then it would undoubtedly rep- 
resent an appwent  r igid body rotation, It i s  evident  that  the method 
of solution f o r  f (x)  in  the  equations  should  not  include  restraints 
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at the  edges or elsewhere tha t  would keep the  method from giving  the 
solution in Eq, (3-8). That is, the  solution must handle the  problem 
described in item (d) above. Further  discussion of the  scale  factor 
problems on F(x) i s  given i n  Section XII. 

(g) Computer limitations,  Since most of  the methods s tudied   in  
this  report  involve  the  inversion  of  matrices of large  order  (either 
41 by 41, 42 by  42, or 20 by 20 from Eqs. (3-3) to (3-5)), the  question 
of  the  accuracy  of  the  inversion on the  digital computer must be consid- 
ered. On the  IEM 360 system  used, single  precision  arithmetic  uses 
8 d ig i t s  and  double precision  azithmetic uses 16 digits.  It was found 
tha t   the  8-digit z i t b e t i c  was insufficient  for  several  methods, so 
tha t  it was decided t o  do a l l  the  calculations  in  the  report   using 
16-place  arithmetic, Even so, one  method of solution  could  not  be com- 
pleted because 16 d ig i t s  was insuff ic ient ,  

The above l is ted  factors   inf luencing  the  solut ion of the  equations 
w i l l -  be  considered in each method of  solution in the  following  sections. 
Several  function methods using power ser ies  and Fourier series, a collo- 
cation method, an i t e r a t ion  procedure, and an inversion  integral  solution 
are  described. In each  case, the  solution is  se t  up i n  matrix form using 
for ty  (40) equal  intervals  across  the  mirror. In the  solution form 

where [f ] is a 41 by 1 matrix for  the  mirror  distortion at 41 points on 
the  mirror,  including edge points, and [F] i s  41 by 1 for   the  same 
41 points (as observed in the  knife-edge t e s t  on the   l ine) .  The [GI 
matrix (41 by 41) i s  derived as a product  of  various  matrices  for each 
method of solution. The results given by all the  methods for   selected 
F(x) functions as well  as the  [GI matrices are campared in Seczion M 
for  the  case of no hole i n  the  mirror. The Cassegrain  type of mirror 
i s  considered i n  Section X. 

IV - KIWER SERIES  SOLUTIONS 

The integration in the  integral  equation (2-12), or 

i s  simple t o  perform i f  f (x)  i s  assumed as a power ser ies  

J 
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i whence 

Note tha t  the form for   f (x)   in  Eq, (4-2) makes the  C1 constant i n  
the homogeneous solution, Eq. (3-6), zero. 

Since Eq. (4-3)  has no zeros i n  the denominator, it should be a 
simple form to   so lve   for   the  A j  constants. Three different methods of 
solution were made, as described below. 

Method A. Expand F(x)   in  a power series 

so that Eq. (4-4), f o r   l i k e  powers of x, gives 

The AJ constants can be  obtahed *om the B j  constants  in Eq. (4-6) by 
a back recursion, in which  



AJ = - - Bj-1 1 
2 

. 

I n  matrix form 

To calculate  the BJ constants  multiply Eq. (4-5) by xi- l  and inte-  
grate t o   g e t  

or 
M+l J 

j =1 j =1 i +  j - 1  (4-10) 
X;” F(XJ ) H,@ = Bj-1  

1 - ( - l ) i + J  -1 

where HJ m e   t h e  Cotes numbers f o r  the  numerical  integration.  In matrix 
form, Eq. (4-10) is  

2 
M - [X][H][F] = [D][B], M equal  intervals, (4-11) 
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4: I' where [B] i s  a J by 1 matrix  for the  Bo, &, - - * ;  BJ-1 constants, [D] i s  
J by J with  the  elements 

I /  
1 

(4-1~a) 

[F] i s  (M + 1) by 1 for  the  value of F(x) at the (M + 1) equally spaced 
points, [HI  i s  a (M + 1) by (M + 1) diagonal  matrix with the Hj numbers 
on the  diagonal, [X] i s  a J by (M + 1) matrix  with  elements 

x i 5  = x5 
i -1 (4-llb ) 

The matrix [Dl  i s  ill-conditioned and  could  not be inverted for the  case 
of twenty  constants  (J=20)  using  sixteen  place  arithmetic on the computer. 
Eowever, the [ D l  matrix i s  similar to   t he   H i lbe r t  matrix. By changing 
the x va r i ab le   t o  make the  interval  of integration from 0 t o  1 rather 
than -1 t o  1, the   resul t ing [Dl  m a t r i x  i s  exactly  the Hilbert matrix  with 

D i 5  = 
1 

i +  j - 1  

, 
From page 139 of  Ref. 4, the elements of the  inverse of the  Hilbert 
matrix w e  (matrix s ize  J by J )  

(-1) (J+i-l)!(J+j-l)!  i - t d  
I D i j  = 

(i+j-l)[(i-l)!(j-1)!l2(J-i)!(J-j)! 
(4-12) 

For the  case of J = 20, the  numerator and denominator for  some elements 
i n  Eq. (4-12) were too  large  for  the computer t o  handle, so that a 
recursion  multiplying  factor had t o  be used, s ta r t ing  from IDl1 = J2. 
This gave the elements,  but  they  varied from IDl1 = 400 t o  
Ih5,15 = 3.6(10)27 for  the  case of J = 20. With these  elements i n  
[D]'l f o r  

[ B l  = [Dl'l[X1[Hl[Fl (4-13) 

it is  evident that a sixteen  place computer cannot  produce values  of B5 
of the  order  of 1.0. In f ac t ,  it gave B5 of  order 10l1 as might be 
expected  (order  27 m i n u s  order 16 = order 11). 

This resu l t  shows that a numerical  function  cannot  be expanded 
direct ly   into a power ser ies  with large  order  terms by regular computers 
with a l imited number of d ig i t s  in the  calculatims.  Naturally,  if the  
function and i ts  derivatives  are known, then  the expansion is  the 
Maclaurin ser ies  wi th  the B5 being  given by the derivatives at x = 0. 



Since the solution  could  not be obtained  for a suf f ic ien t ly   l a rge  
number of constants  using the available computers, method A has not been 
completed i n  this report. 

Method B. Multiply Eq. (4-3) by XI-' and in tegra te   to   ge t  

J 

where 

E i  =I xi" F(x)dx 

K i J  = - [l - (-1)j-k+1][1 - (-l)i+" ~~ 

(j-k+l) (k+i-1) (4-16) 

This method expands F(x) in a power ser ies   but  does not  calculate  the 
Bj  in Eq. (4-5) directly.  Instead,  the A3 are calculated  directly from 
Eq. (4-14). If desired, the BJ can then  be  obtained from Eq. (4-6). 

In matrix form, Eq. (4-14) i s  

where Eqs. (4-15)  and  (4-10)  have been used.  Here [A] i s  J by 1 for 
the J unknown AJ constants, [K] is J by J with elements in Eq. (4-16), 
and [X], [HI,  [F] are as for  Eq. (4-11). Now Eq. (4-2) gives 

where [ f  ] i s  (M+1) by 1 for   the   resu l t s  at the  (M+1) equally  spaced 
points, and [Y] is (M+l )  by J with the  elements 

Now, i f  Eq. (4-17) i s  solved  for [A] and the   resu l t   pu t   in  Eq. (4-18), 
there   resu l t s  

(4-20) 

(4-21) 



I D  

IJ 
i 
jl 

where [GI i s  (Mtl) by (M+1) and operates on the (M+1) values  of  F(xj)  to 
produce the (Mtl) values  of f (x3 ) at  the same points. 

For the  case  of J = 20 constants  for  the AJ i n  Eq. (4-2), it was  
found that  the  lazgest   terms  in  the 20 by 20 [K]'l were of  the  order of 

which is  much better  than  the terms of order i n  Method A. 
However, with  l6-place  calculations i n   t h e  computer, there  appears t o  
be some round-off error   in   the [K]'l matrix so tha t  20 constants  probably 
represent  the maximum number tha t  can be  used in a 16-aigit machine for  
this Method B solution. 

Results  for  f(x)  using Eq. (4-20) for  selected  F(x)  functions or 
point  data are given i n  Section IX together  with a discussion  of  the 
resul ts .  

Method C .  Take Eq. (4-3) as 

where 

(4-22) 

(4-23) 
i = 1,2,***,  M -1.1 fo r  (MI) points 

Solve for A j  directly  without expanding F(x)  in a power series.  This 
i s  a collocation  solution f o r  Eq. (4-3). In  matrix form 

where [A] i s  J by 1 for the  J constants Ad,  [B] i s  (M+1)  by J with  ele- 
ments in Eq. (4-23), and [F] i s  (M+1) by 1 for the  (M+1) point  values 
of F. Unless the same  number of  points  as  constants  are used [B] i s  a 
rectangular  matrix and  cannot  be inverted to give [A]. However, i f  
Eq. (4-24) i s  multiplied by [BIT, the  transpose  of [B],  then [BIT[B] i s  
a square  matrix  with  positive  diagonal  terms  that can be inverted. Thus 

whence 



If this [A] i s  put   into Eq. (4-18) there follows 

where [Y] i s  defined by Eq. (4-19)  and [B] by  Eq. (4-23). 

This procedure  of  using  the  transpose  of the matrix to   ob ta in  a 
solution i s  equivalent t o  solving Eq. (4-24) in   the  sense  of   least  
squares.  See Appendix A for   the  proof  of t h i s  statement. 

It should  be  pointed  out t ha t  t h i s  power ser ies  Method C i s  the 
only method of  solution  presented  herein that does not  involve a numerical 
integration. .However, multiplication by [BIT i s  equivalent t o  an indirect  
numerical  integration  using  the  trapezoid  rule. This operation is  similar 
to   the  mult ipl icat ion by x"' i n  Method B, followed by a numerical inte- 
gration . 

For the  case of J = 20 constants  for  the A j ,  it was found that the 
largest  terms  in  the 20 by 20 [BTB]-l matrix were  of the  order of 
which i s  an improvement over  the Method B inverse  matrix.  Results  given 
by  Eq. (4-26) for   parer   ser ies  Method C are  described in Section I X .  

V - FOURIER SERIES SOLUTIONS 

By making a change of variable 

it i s  possible  to  solve the integral  equations (2-11) or (2-12) by using 
Fourier  series  expansions. One procedure i s  t o  change the  var iable   in  
the  parer  series form i n  Eq. (4-3) and obtain  the  relation between the 
constants  for  both f (x) and F(x) i n  Fourier  cosine  series.  Katzoff has 
used t h i s  method i n  Ref. 2. A brief  description  of  the  procedure  using 
matrices is  given below as Fourier  series Method B. Another procedure 
is  t o  expand f ( x )   i n  a sine  series and  F(x) i n  a cosine  series,   in which 
case  the  integrations  for Eq. (2-11)  can  be made directly.  T h i s  method 
i s  described below as Method A. 
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Method A. Use the change of variable in Eq. (5-1) and take 

N 

n=l 
f (x) = f (cos e )  = An sin  (ne) . (5-2) 

Since 

x = -1 gives 8 = rt , x = 1 gives 8 = 0 (5-3) 

the form (5-2) res t ra ins  f (x) t o  be zero at the ends. If f (x) $.O at the 
ends,  then f (x) must be regarded as discontinuous at the ends,  which 
requires many  more terms in   the  ser ies   to   obtain convergence.  Equation 
(2-11) now becomes 

F(8) = 2  log s i n  8 An sin  (ne) 

- 5 A n d  s i n  (ncp) s i n  cp 
n=l cos cp - cos 8 

By using  the  identity 

(5-4) 

the   in tegra l   in  Eq. (5-4) can be changed t o   t h e  form of  the  Glauert 
integral  (Ref. 5, p. 92-93) 

which occurs in   thin-airfoi l   theory and finite-wing  theory of  aerodynamics. 
This gives 

= - K cos (ne) (5-7) 

so that 

F(8) = 2 log (  sin e )< An s i n  ne + 51 5 An cos ne 
1 + COS e n= n= (5-8) 
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E x p a n d  F(8) i n  a cosine  series by multiplying Eq. (5-8) by cos me and 
integrating from 0 t o  sc. Thus 

N 
A, + K,,A, = E, , m = 0,1,-=-, N - 1 , (5-9) 

nE 
where 

SE 
E, = - J F(B) cos mede 

Jc2 0 

The in tegra l   for  K,, in Eq. (5-11) i s  evaluated in Appendix B to   give 

K,, = 0 , for  m + n odd 

4 m 1 
2k-1 

K,, = - - , m = n  , 
?.EX2 k=l 

I (m-d/2 I 
+ ' 2 k - 1  c2 (m-n) 

1 

k =  1 

Since  there i s  no A, term i n  Eqs. (5-2)  and (5-9) but F(0)  may have 
a constant t e r m ,  it is necessary t o  use  care in   wri t ing Eq. (5-9) i n  
matrix form so as t o  properly  include  the m = 0 case. If the m = 0 
equation i n  (5-9) i s  put in t h e   l a s t  row rather  than  the first row, then 
the  matrix  equation  takes  the  simple form 

where [I ] i s  the  N by N identity  matrix  with element INN = 0 ,  [K] i s  
N by N with  the  elements i n  Eq. (5-12) but with row N having m = 0 or 
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KN, = 0 for n odd 

n/2 
- 
”- 

I- for n  even 

and [E] i s  N by 1 for  the  values of the  integral  in Eq. (5-10) for 
m = 1, 2,..*, N - 1, 0,  respectively. [A] represents  the N unknm 
constants. 

The matrix form of E, for   the numerical  integration for point  values 
of F(8) i s  

where [C]  i s  N by M (N constants and M points for the  numerical  integra- 
tion)  with  elements 

c i j  = - cos i o J  , cos N O j  = -1 , ( 5-16) 

[HI i s  the M by M weighting matrix for   the  numerical  integration, and 
[F] is M by 1 for  the M point  values of F. Here = fi for  x = -1 so 
that   the  numerical  integration stmts at the upper limit i n  Eq.  (5-10). 

Put Eq.  (5-15) into Eq. (5-13) to  get  the  constants A, i n  Eq. (5-2) 

[A] = 2 [I+K]”[C][H][F] (5-17 1 
fi2 

The matrix form of Eq. (5-2) i s  

[ f l  = [sl[Al 

where [SI i s  M by N with elements 

Finally , 



. " . 

where [GI .is M by M and operates on the M values  of F(0j ) t o  produce 
the  M values of f ( G d  ) . 

Equal Ax and Equal A6 Intervals.  Since a change of  variable 
(Eq. 5-1) i s  used in  the  Fourier  series  analysis,  there  arises  the ques- 
t i on  of what intervals   to   use  in  Eqs . (5-19)  and (5-20). If equal Ax 
intervals are used,  then  the A0 intervals w i l l  be  unequal. On the  other 
hand, i f  equal A0 intervals   are  used,  then  the Ax intervals will be 
unequal.  Since the other methods of solution  presented  herein  use  equal 

intervals,  it is desirable  to  calculate f ( x ~  ) at equal Ax intervals 
i n  order t o  make a direct  campasison with the  other methods i n  Section IX. 
This was done by using Qi i n  Eq. (5-18) at the  equal gx intervals. On 
the other hand, the numerical  integration  involving Eq. (5-15)  can be 
done ei ther  way by using 03 i n  Eq. (5-16) for  equal Ax or equal A0 with 
the corresponding  values  of  F(0j), either calculated  in  selected  cases 
or interpolated in actual  cases. The case of equal ax is given i n  
Section M for  th i s  Method A using  the  trapezoid  rule  for  the matrix [HI. 

Special Numerical Integration  Procedure. A s  pointed  out in paragraph 
(c) of Section I11 di f f icu l t ies  may occur in   the  numerical  integration 
for  function methods, particularly  for  cyclic  functions. For the  case 
of 20 constants and 41 points  used in this report, it was found that the 
trapezoid  rule  for  the matrix [HI i n  Eq. (5-20) gave poor results for  
both  equal ax and  equal a0. (see Sec. IX for   resu l t s )  . In  order t o  
improve the numerical  integration  in Eq. (5-lO), the  cosine  function was 
integrated  across each interval  (both for equal Ax and  equal A8) with 
F(0)  being  held  constant  over  the  interval. Thus 

The matrix [C 1 [H 1 i n  Eqs . (5-15) and  (5-20) i s  replaced by a matrix 

where, from Eq. (5-21), the elements  of [Dl are  (8, = YC, 6~ = 0 )  
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 if^, j # 1 , ~  

The [ G I  matrix  in Eq. (5-20) becmes 

where the elements  of [SI ,  [K], and [Dl ase  given  in Eqs. (5-18), (5-l2), 
(5-14) and  (5-23),  respectively. Also, INN = 0 i n   [ I ] .  

The matrix [ D l  i n  Eq. (5-24)  can  be calculated  for  equal or for  
equal A8. Results  for  the  case  are s h m  i n  Section IX for Method A .  

Method B. This method uses  the change of var iable   in  Eq. (5-1) i n  
the power ser ies  method after integration, Eq. (4-3), and relates   the 
Fourier  cosine  series  constants for f ( x )  and F(x). The detai ls  of the 
procedure is  given by Katzoff in Ref. 2. A brief  outline of the method 
i n  matrix form i s  given below so as t o   s e t  up a form similar to   t he  
other methods in  order  that   results  of a l l  the  methods can be compared 
directly.  Put Eq. (5-1) in to  Eq. (4-5) t o   g e t  

Take the  Fourier  cosine  expansion  of F(8) 

" 

as 

cos j 8  



where the PJ may be regmded as known, 

Yt 

PJ = ’1 F(8) cos  j0d8 
f i 0  

(5-27 1 

Now the B j  constants  in Eq. (5-25)  can be obtained i n  terms  of the 
known Pj constants  in Eq. (5-26) by using  the summation form of Eq. (7) 
i n  R e f .  2: 

K 
cos ne = ( -l) in(n-i-l)!  (2)n-2i-1(c0s e )n -2 i  

i = O  (n-2i) !i! 

K = -  n - 1  
2 

, for  n odd , 

K = -  n 
2 

, for n even . 

Substitute Eq. (5-28) in to  Eq. (5-26) and equate  the  result  for F(0)  t o  
the form for  F(8) i n  Eq. (5-25). The coefficients of corresponding 
(cos 8 ) j  terms on both  sides of the  resulting  equation must be  equal so 
tha t  

m = 1, 2,* .* ,  J - 1 . I 

In  matrix form, Eq. (5-29) i s  
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where the elements of [R] are 

R i J = O  , j < i  1 
R i j  = 

R 1 1  = 
1 
2 
- . 

m e  Aj constants in Eq. (4-2) a re   r e l a t ed   t o   t he  BJ constants by 
Eq. (4-8) as 

[AI = [Ql ' l[B] (5-32 1 
where the Qi J elements are 

Hence, the A5 constants can  be expressed i n  terms of  the PJ constants 
by putting Eq. (5-30) in to  (5-32) to   ge t  

The numerical  integration  for  the PJ constants i n  Eq. (5-27) i s  similar 
t o  that for  the EJ 'constants i n  Eqs .  (5-10) and  (5-15) for  Method A. 
Thus 

for  the  special  form in E q s .  (5-22)  and  (5-23). However, the last  row 
in [Dl  should be t ransfer red   to  the first row in   the  [Dl  fo r  Eq. (5-35) 
in order that the [PI matrix be compatible w i t h  the [R] matrix in 
Eq. (5-34) 
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Since it i s  desirable   to   calculate  f (xj ) at equal Ax in te rva ls   in  
order t o  compare the results to   the  other  methods, Eq. (4-2) or  (4-18) 
can be  used for f (x) to   give 

where Eqs . (4-18) , (5-34) , and (5-35) have been combined. Here, the [Y ] 
matrix  should be calculated from Eq. (4-19) for  equal Ax intervals,   but 
the [Dl matrix  should be calculated  for  equal A@ intervals  (Eq. (5-23) 
with row N used as row 1. T h i s  requires that [F] i n  Eq. (5-36) be known 
a t  equal A0 intervals.  If the  Fj  values  are  given at equal Ax intervals ,  
then an interpolation  matrix can be  used to   ca lcu la te  F j  at the  equal 
A@ intervals.  For this case [GI i n  Eq. (5-37) becomes 

with [IM] an interpolation matrix. Results  are  given  in  Section IX  for 
a s t ra ight   l ine   interpolat ion  matr ix  and for  exact FJ at equal A0, using 
a selected F function. 

To calculate f j  a t  equal A0 intervals,  as  Katzoff does i n  Ref. 2, 
a further  modification can be made t o   t h e  [ G I  matrix i n  Eq. (5-37). 
If f ( 0 )  i s  expanded i n  a Fourier  cosine  series  without  the  constant  term, 
as 

.T 
f ( 0 )  = 2 H j  cos j 8 , 

j=l 
(5-39) 

then a re la t ion between the A j  constants  in Eq. (4-2) and the H j  constants 
can be  obtained i n   t h e  same  manner as above for the   re la t ion between the  
B j  and Pj  constants in Eq. (5-30). Thus 

where 
sij = 0 , for j < i  , I 
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or (5-42 1 

( 5-43 

(5-44) 

which corresponds to   t he   r e l a t ion  given by Katzoff i n  Ref. 2. This 
Eq. (5-44) gives  the  constants  in  the  Fourier  cosine  series  for f ( e )  i n  
terms of the  constants i n  the  Fourier  cosine  series  for F ( 0 ) .  Thus, 
for  f j  a t  equal n e  intervals 

where the  elements  of [TI  are  

T i j  = cos jet  (5-47 

and [a]" and [Dl are  the same as i n  Eq. (5-37). 

In Ref. 2, Katzoff  uses the same number of points as constants, 
does not  include  the end points, and uses  the  trapezoid  rule so tha t   h i s  
[ D l  matrix  has  the  elements 

with [ D l  being a square matrix. 



V I  - COLLOCATION SOLUTION 

In  Sections I V  and V, function methods of  solution  of Eqs. (2-U) 
or (2-12) using puwer ser ies  and  Fourier series have  been described. 
Another method of  solution, which is simple t o  apply, is a direct collo- 
cation on Eqs. (2-ll)  or (2-12). Take  Eq. (2-12) i n   t h e  form 

which gives M equations  for M xi  points. Now, a numerical  integration 
can be made on the unknown function f (t). Since f (xi ) occurs under the 
integral ,  it is  necessary t o  use  the same points   in   the numerical inte- 
gration  as  in  the Eqs. (6-1) i n  order t o   g e t  a determinate  system  (see 
p. 455, Ref. 3 ) .  

The question arises as t o  which of Eqs. (2-11) or (2-12) t o  use in 
the  collocation. It is  evident  that  the edge points cannot  be  used i n  
Eq. (2- l l ) ,  as the  log  term becomes in f in i t e  at the  ends. Also, the 
integrand  in  the  integral   in Eq. (2-11) becomes i n f i n i t e   a t  t = x. 
However, this problem can be handled by using  the Cauchy principal  value 
for  the  integration. It was also found that  the  collocation  solution 
using Eq. (2- l l )  gave a r i g i d  body ro ta t ion   to   the   f (x)   so lu t ion  (item 
(f ) ,  Section 111). This  rotation  apparently  resulted from the first term 
i n  Eq. (2-11)  being  exact,  while  the  integral was approximate. Now, i f  
f (x )  i s  continuous,  these problems do not   a r i se   in  Eq. (2-12).  This can 
be shown by expanding f (t ) i n to  a Taylor's  series  about t = x: 

f ( t )  = f (x) + f (x)(t-x) -I- f"0 (t-d2 +"* 
2! 

This  gives  the  integrand in Eq. (2-12) as 

Thus, fo r  t = x, 

and the  integrand i s  f i n i t e  and continuous at t = x, i f  f l ( x )  i s  
continuous. 
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Further, from Eq. (6-3)  

g'(x,x) = - f f f ( X ) ,  gff(x,x) = 1. f"f (x), t = x 1 
2 3 6-51  

This indicates that for  any derivative of f (x) that i s  discontinuous, 
the  next lower derivative  of  g(x,x) w i l l  be discontinuous, and the  cor- 
responding  derivative  of  g(x,x) will be inf in i te .  As pointed  out  in 
paragraph (b) of  Section 111, the  behavior of these  derivatives w i l l  
affect  the  numerical  integration  in Eq. (6-1). Further  discussion of 
these  derivatives in the  collocation  solution i s  given for  selected 
functions i n  Section I X .  

On the  basis of the above discussion, Eq. (2-12) or Eq. (6-1) w i l l  
be used i n  the  collocation  solution. With numerical  integration, 
Eq. (6-1) becomes 

where the H j  axe the Cotes numbers for  equal  intervals  in  the  integration 
(paragraph (b) ,  Sec. 111). For the M points and M - 1  intervals on 
x = -1 t o  x = 1, 

2 ox=- 
M - 1  

and Eq. (6-6) becomes 

As j + i, Eq. (6-4) gives 

f.l - fi +f ' (Xi)&K 
j - i  
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A t  the end points, i = 1 and M y  the  three  point Lagrangian different ia t ion 
formula  (p. 516, Ref. 3)  gives 

These Eqs. (6-8)-(6-10) can be canbined in to  a matrix  equation 

where [A] i s  M by M for  M points  with  the  elements 

A12 = 2Hl + H 2  , A 1 3  = 1. (H3-HI ) , 
2 

A i 3  = A- , i + j  , except above values, 

A i %  = - Ai , see Eq. (6-8) . 
-i 

(6-10) 

(6-12) 

Since  the  diagonal elements A i i  are  the  negative sum of all other elements 
i n  each row, it i s  evident that when f (x )  i s  constant,  F(x) will be zero 
as required by the homogeneous solution i n  paragraph (c),  Section 111. 
This resu l t  i s  not  given  exactly by Eq. (2-11), since  the  log term on the 
diagonal i s  only approximated by the  negative sum of the  other elements 
i n  each row. 

Since all rows of the [A] matrix i n  Eq. (6-12) add t o  zero,  the 
matrix [A] i s  a singular and  cannot be inverted. It i s  necessary t o  add 
a boundary condition on f(x)   to   obtain  the homogeneous solut ion  in  
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Eq. (3-6).  To correspond t o  the power series  solution i n  Section m, 
which made f (0) = 0, the  restraint   condition 

was selected. Now the  system of  equations i n  (6-LL) and (6-13) has M + 1 
equations in M unknowns. To solve such a system, multiply by the  matrix 
transpose, as i n  pmer   se r ies  Method C above. In   t h i s  case, the  result ing 
system  of M equations  for  the M unknowns can be  expressed as 

[B] = [AITIAl + LC] 

where the elements of [ C ]  are 

c i j  Y c ( M + 1 ) / 2 ~ (  m+1) /2  = 1.0 

The [B] matrix i s  nonsingular so that 

(6-16) 

[ f ]  = - [B]'l[A]TIF] = [G][F]' (6-17) 

[GI = - [B]'l[AIT (6-18) 

Results  given by Eq. (6-17) for  selected  functions  of  F(x) are 
s h m   i n  Section IX and cmpared  to  the  results of the  other methods. 
The [ G I  matrix i n  Eq. (6-18) i s  also compared to   the  other  [GI  matrices 
in Section IX. 

VI1 - ITERATION SOLUTIONS 

I terat ion i s  a classical  procedure for solving integral  equations. 
However, when numerical integration is  involved in the   i terat ion and 
the  equation has singular  points,   difficult ies can arise.  A s  pointed 
out i n  Section V I  on the collocation  solution Eq. (2-11) has inf in i t ies  
in   the   log  term at  the end points and has a singularity at t = x. Yet 
Eq. (2-11) i s  i n  t h e  form needed fo r   i t e r a t ion  so tha t  it should be used 
rather  than Eq. (2-12). 
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Equation (2-11) can be writ ten in  two forms for   i t e ra t ion  

fmel ( t ) d t  
t - x  1 

fm(t)dt = - F(x) + f,-l(x) log (a) 
l + x  (7-2 

The form i n  Eq. (7-1) requires a direct   integration  to  get   the  next 
f,(x) while  the form in Eq. (7-2)  requires  the  solution  of a well-known 
integral  equation for which the  inversion  integral  i s  known. The form 
i n  Eq. (7-1) was found t o  be divergent so that  the  following  discussion 
is  r e s t r i c t e d   t o  Eq. (7-2). 

The solution of Eq. (7-2) for  f,(x) i s  given as an example i n  
Section VIII. From  Eq, (8-40) 

where the  possible forms of X(x) and @h(x) from Eqs. (8-41)--(8-44) are  

f ,(x) may be  unbounded at x = f 1; I 

f,(x) may be unbounded at x = -1; 1 



I (7-7) 
f,(x) i s  bounded, but Eq. (8-45 ) 
r e s t r i c t s  G,,1 ( t )  . 

Since  f(x) i s  actually bounded in the problem under consideration, any 
of the  four forms i n  Eqs.  (7-4)-(7-7) may be used fo r  X(x) and X(%) i n  
Eq. (7-3) . For the numerical in tegra t ion   in  Eq. (7-3), the form X ~ ( X )  
will m a k e  the integrand  zero at the ends w h i l e  the other forms w i l l  make 
it i n f i n i t e  at one or  both ends. Necessarily,  the end p i n t s  must be 
omitted in   the  calculat ions,   but   the   total  area i n  the integral  must be 
included. A reasonably  accurate  representation of the  area  ne=  the ends 
can  be obtained  for the X, form, but  only a rough  approximation  can  be 
obtained  for  the  other forms. The matrix form for all the cases i s  as 
follows . 

S t a r t  w i t h  fo  = 0 as the f i rs t  approximation in   the   i t e ra t ion  
procedure so that 

where @h(x) = o f o r  dl cases.  In  matrix form 

where the same points me used f o r  x and t and 

The numerical  integration  matrix [AI] i s  taken in   the  same form as t h a t  
for  the  collocation method i n  Section VI. 



For the i te ra t ion  from Eq. (7-2) and Eq. (7-3) 

L 
f l ( t )  log ( s ) d t  

" 

where [ I ]  i s  the  identity  matrix and 

The form for   f3(x)  i s  

After m i terat ions,  



3-  . 
a collo 

solution of Eq. (7-3) with ah = 0, f, = f,-l. That is, Eq. 
cation 
(7-3 ) becomes 

or  

or , by  use  of Eq. (7-14) , 

where [ G I  i s  given by  Eq. (7-17). T h i s  indicates that the   i t e r a t ion  
solution can only approach a collocation  solution of Eq. (7-3)  with 
G,,= ( t) given by  Eq. (7-2) and f,-, = f, at convergence. Because of the 
log  term and the X ( t )  term in Eq. (7-3) , it appears that a collocation 
solution of Eq. (7-3) would be less  accurate  than  the  collocation  solution 
i n  Section V I  for   the   or iginal  Eq. (6-1). Thus, there is l i t t l e   j u s t i -  
f ication  for  using a COllOCatiOn  SOlUtiOn~ on a  modified  equation or for 
a i te ra t ion   so lu t ion   in  this particular problem, as campazed t o  a collo- 
cation  solution of the  original  equation. However, t o   ge t  some idea of 
the  behavior of the  i terat ions and of  the  different forms of the X(x) 
function,  the Eqs. (7-15) and (7-16) are  used  for five i te ra t ions  on a 
selected  function in  Section IX for   the X, and X 2  forms, Eqs. (7-4) and 
(7-5),  and the  resul ts  compared to   t he   o the r  methods. For the X2. form 
i n  which the  integrand in Eq. (7-3) becomes i n f i n i t e  at x = 1, the [AI] 
matrix in Eq. (7-11) was modified t o  include the approximate integrated 
area  over  the  interval  adjoining x = 1. Examination of  the powers of 
the [J] matrix i n  Eq. (7-16) shows for  both X, and X 2  t ha t  up t o   t h e  
fourth power, most of the elements are decreasing  but some are  oscil lating 
and some are actually  increasing. Because of t he  approximations in the  
numerical  integration it does not  appear t ha t  all the elements in Jm" 
will become zero  for a prac t ica l  number of m i terat ions.  This error  
accumulation can be avoided by using  the limit form i n  Eq. (7-17), but 
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then this is not an i teration  solution  but a collocation  solution. 
Further discussion of the i t e r a t ion  results i s  given in   Sect ion M. 

VI11 - INVERSION  INTEGRAL  SOLUTION 

- It i s  possible  to  obtain a solution  for  both  the  solid  mirror,  
Eq. (2- l l ) ,  and the  mirror w i t h  a central   hole,  Eq. (2-l3), i n  an integral  
form by using methods described by Muskhelishvili in R e f .  6. Although 
the  formula from which the solutions can be  obtained is  given on page 328 
of  Ref. 6 ,  the  definitions,  conditions, and derivations  leading up t o  
this par t icular  formula are  spread  throughout  the book.  The derivations 
aze made fo r   t he  complex plane and the  equations are i n  terms  of the 
complex variables z and t. A brief  outl ine of the derivation of the 
solution is  given below. 

Consider the  limiting  value of the Cauchy integral  

as z approaches to on the  arc  or contour L. If cp(t) sa t i s f i e s  a Hslder 
condition on L of the form 

where A and k are  positive  constants,  then  Muskhelishvili (Ref .  6 ) shows 
that @(z)  is continuous on L from t h e   l e f t  and fiom the  right, with the 
exception of those ends at which cp(t) # 0. Further,  @ ( z )  tends  uniformly 
t o   t h e  limits 

from t h e   l e f t  of L and from the right of L,  respectively. Here, L may 
be a union of smooth, non-interesecting arcs or contours, L1, L2---Lq, 
with definite  posit ive  directions w i t h  the + region on t h e   l e f t .  These 
equations can be wr i t ten   in   the  form 
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@+(to) + @-(to) = 1 cpodt = 2@(t0) 
si t - to 

The function cp(z), holomorphic in   t he  complex plane,  except  possibly at 
inf in i ty ,  and continuous on L from t h e   l e f t  and from the  r ight  with  the 
possible  exception  of  the ends bk, near which the  inequality 

holds, is called  sectionally holomorphic with  the  l ine of discontinuity 
L or boundary L.  

From  Eq. (8-5), it i s  evident  that  the Cauchy integral  formula 
solves an important boundary value problem.  That is ,  it i s  required  to 
f ind  a sectionally holomorphic function @(z),  zero at inf in i ty ,  and 
satisfying  the  given boundary condition 

@+(t) - D - ( t )  = cp(t) on L . (8-8) 

If q ( t )   s a t i s f i e s   t he  H condition, Eq. (8-2), the  solution  for @(z)  i s  
given by Eq. (8-1). 

In   h i s  book  on "Singular  Integral  Equations,"(Ref. 6 )  Muskhelishvili 
develops th i s  procedure of solving boundary value problems and applies 
it t o  various boundary value problems  and integral  equations. To arrive 
at   the  integral   equation form tha t  is suitable  for  the  subject problem 
(Eqs. 2.11 and 2.l3), it i s  necessazy t o  first consider  the  Hilbert 
boundary value problem for  both  the homogeneous and nonhomogeneous cases. 

Homogeneous ~~ Hilbert Problem 

The  homogeneous Hilbert problem can be s ta ted as : To find a 
sectionally holomorphic function  @h(Z) of f i n i t e  degree a t  inf in i ty  
satisfying  the boundary condition 

@z(t) = G ( t ) @ c ( t )  on L , (8-9) 

where G ( t )  i s  a given  non-vanishing  function on L, satisfying  the H 
condition. 
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Take logarithms on both  sides  of Eq. (8-9) t o   ge t  

log cbg(t) - log  cbi(t) = log G ( t )  (8-10) 

which has  the form of Eq. (8-8) above. Thus, the  formd  solution  for 
log @h is  given by Eq. (8-1) as 

or  

(8-11) 

(8-12) 

There are two difficult ies  with  this  solution  for  ah(z)  in Eq. (8-12). 
The function  log G ( t )  i s  multivalued  and  the  solution  for may not 
obey Eq. (8-7) at the ends  of the  arcs L j  ( j  = 1, -q) of L. These 
difficult ies  are  resolved by Muskhelishvili (pp. 230-234, Ref. 6 )  i n  
the  following manner. 

Near any  end %(k = l,.. , 2q), P ( z )  i n  Eq. (8-12) can be  written 
i n   t h e  form 

where Po(.) remains bounded near bk. Thus 

near bk, where ak  and C k  are  real  constants  given by 

(8-14) 

and Q( z )  i s  a non-vanishing  function bounded near bk. Now Select 
integers hky satisfying  the  conditions 

and  put 



Then the  function 

X(z) = T(z)eP(’) (8-18) 

sa t i s f ies  Eqs . (8-7)  and (8-9) and is  a solution of the homogeneous 
Hilbert problem. 

Since Eq. (8-16) may permit two values  of hk for  some k values, 
the  solution X(z) i s  not  necessarily  unique. Its form will depend upon 
what requirements are placed upon the  solution at the end points. If 
the  solution is t o  be bounded at. certain end points,  then one form 
resul ts .  If it i s  permissible  for  the  solution  to become in f in i t e  a t  
some end points  (under  condition  (8-7)),  then a different form  of the 
solution  results.  Muskhelishvili  (p. 231, Ref. 6 ) divides  the  solutions 
into  classes on basis of  the end point  requirements  and shows that the 
most general  solution  in a certain  class  has  the form 

where R ( z )  i s  a arbi t rary polynomial  of  order depending upon the  desired 
behavior of the f’unction at inf ini ty .  Thus the  solution of the homogen- 
eous Hilbert problem has the form 

@ h ( Z )  = T(z)R(z)eP(’)  (8-20) 

where P(z )  and T(z)  are  defined by Eqs. (8-12)  and (8-17) , respectively, 
and R (  z)  i s  a polynomial  with arbitrary  constants. 

Nonhomogeneous Hilbert Problem 

The  nonhomogeneous Hilbert Problem may be s ta ted as : To f ind  a 
sectionally holomorphic function @( z )  , having f i n i t e  degree at inf ini ty ,  
for   the boundary condition 

@+(t) = G(t)@-(t)  + g ( t )  on L (8-21) 

where G(t) and g ( t )   a r e  given  functions with at most finite  discontinui- 
t ies on L and G(t) # 0 on L. As for   the homogeneous problem, L may be 
a union of  smooth nonintersecting a c s .  

The solution  of  the nonhomogeneous problem  can  be obtained from the 
homogeneous solution. From Eq. (8-9) 
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(8-22) 

With cp = log G and Q, = log  X, it follows from Eqs. (8-5) and (8-6) tha t  

Put G ( t )  from Eq. (8-22) in to  Eq. (8-21) t o  get 

This Eq. (8-25) i s  of the form of Eq. (8-8) so tha t  from Eq. (8-1) 

Thus 

(8-26) 

where any homogeneous @h ( z )  has  been  included. By using Eq. (8-24) , 
the  solution  (8-27) can be writ ten as 

(8-28) 

which i s  the  generd  solution of the nonhomogeneous Hilbert problem w i t h  
X ( t )  given by Eq. (8-23). 

This  solution  (8-28) can be  used t o  solve  various  singular  integral 
equations,  including  the  integral  equations (2-11) and (2-13)  under 
investigation i n  this  report .  



I 
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Integral  Equations  Solutions 

The integral  equation  discussed i n  Section lo7 of Ref. 6 can be 
adapted t o   t h e  problems involved i n  this   report .  The equation  has  the 
f orm 

with  A(t), B ( t ) ,  F( t )   sa t isfying  the H condition, Eq. (8-2). If f (to) 
corresponds t o  cp(to), then Eqs. (8-5) and (8-6) can  be  used t o  express 
the unknown f (to) i n  terms  of an unknown function @( z)  and the Eq. (8-29) 
can be m i t t e n   i n   t h e  form 

or 

This Eq. (8-31) corresponds to  the nonhomogeneous Hilbert problem 
i n  Eq. (8-21) so that  i f  @ ( z )  i s  determined for t h i s  problem then  the 
solution of the  integral  equation (8-29) i s  simply 

f(to) = @+(to) - @-(to) 

F r o m  Eqs. (8-28), (8-31) , and  (8-32) 

(8-33) 
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Use Eqs. (8-3) and (8-4) for  a(z)/X(Z) i n  Eq. (8-34) and take to = x, 
g ( t >  = F ( t ) / X ( t ) w  , t o   g e t  

Since, from Eq. (8-24), I (8-37) 

x+ + x -  = ( f i + & ) x  = 2Ax m 

@; - @< = (x-!"x-)R(x) = - 2B 
Oh 

it folluws from Eqs. (8-33), (8-35) and (8-36) tha t  

This is the  general. solution  of  the  integral  equation (8-29)  with  @h(x) 
given by Eq. (8-20) and X(x)  given by  Eq. (8-23). The solution can be 
used for  the  pasticular  integral  equation  used  in  the  iteration method 
in  Section VI1 as well as for  the  integral  equations  (2-11) and (2-13). 
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In tegral  . ~ _ _ _ ~  Equation - Solutian  for  I teration Method 

i s  the  integral  equation  to  be  solved. From  Eq. (8-38) the  solution i s  

f (x )  = - x(x) 1- dt + ah(x) 
lt2 L X(t)(t-x) 

(8-40) 

To f i nd  X(x) i n  Eq. (8-23) and @h(X) in Eq. (8-eo), get G ( t )  = -1 from 
Eq. (8-32), log G(bk)  = rri i n  Eq. (8-15) so that q = - - 1 at x = -1, 

a2 = - at x = 1 with L t he   l i ne  -1 5 x 5 1. Thus i n  Eq. (8-16), 
hl = 0 or 1, = 0 or  -1. I n  Eq. (8-20),  with G = -1, 

2 

P(x) = 1 2 log(*) 
l + x  

whence 

\i x(x) = ( l+x)~ l ( l -x )h2  - 1 - x  
l + x  

x,(x) = , A1 = 0 , = 0 (8-42 ) 
l + x  

x4(x) = 4iTF , 31 = 1 , = 0 (8-44) 

For these four possible forms of X(x), the  homogeneous solutions  %(x) 
have the  value 0 except for  %(x) = C o / m  (pp. 240-242, Ref. 6 ) .  
For the  case  of X 4  with  both ends bounded there i s  a res t r ic t ion  on F ( t )  
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The proper form of X(x) t o  be  used i n  Eq. (8-40) depends upon the 
desired  behavior  of  the  solution at the end points. For example, i n   t h i n  
a i r fo i l   theory  of aerodynamics where f(t) i n  Eq. (8-39) represents  the 
pressure  distribution, it i s  desired  that  f(1) = 0 at x = 1 t o   s a t i s f y  
the  Kutta  condition  while f (-1) may be  inf ini te .  Thus the form X2(x) i s  
used i n  Eq. (8-40) f o r   t h i s  problem. 

Solution of the Foucault  Test Integral  Equation 

The  Eq. (2-11) for   the   so l id  mirror is  the same as Eq. (8-29)  with 

A(x)  = l og  - 1 - x  
l + x  

, B(x) = - a i  , x = to (8-46) 

and the  solution f'rom Eq. (8-38) i s  

To f ind X(x) i n  Eq. (8-23) and @h(x)  in Eq. (8-20), start w i t h  
(see Eq. 8-32) 

= e  n i e ( t )  

where 

(8-48) 

( 8-49 1 



N o w  e ( t )  = 0 a t . t  = -1, and 6 ( t )  = fi at  t = 1 so t ha t  in Eq. (8-15) 

whence a, = 0 at x = -1, a2 = 1 at x = 1. From Eq. (8-16), A1 = 0, 
= -1 and from Eq. (8-17) 

In  Eq. (8-12) 
-1 

To evaluate  Q(x),  differentiate and change variables: 
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,. ...-. ."..."_ """_ 

where 

dt  = - - sech2 2 du 1 
2  2 

Take 

whence 
dQ - 
" (l+eu) du 

(e"-e") (5c2+u2) 

1 du 
(e"-.") (5c2+u2) 

W 

- - "[L 1 arctan ; 1 + s ( x )  
l + x  II -00 

" - + s ( x )  
l + x  

The integral  S ( x )  has poles in the  upper  plane a t  

so that 

s ( x )  = 25ci 2 Residues 
(1+x)2 
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p d where Eq. (8-53) has  been  used to  simplify  the  results.  Use p a r t i a  
!. fractions and evaluate  the sum to   ge t  

=" l +  2 v + s i  
l + x  1 - x 2 v 2 + s 2  

Thus 

& =  I dv + a i /  dv 
E' + v2 s2 + v' 

and from Eq. (8-51) 

P(x) = l o g  (1-x) + log+ + log'( =) l + x  + c1 (8-54 1 

where the   a i@ term has been dropped from the   rea l  P(x); t h i s  term 
represents  the G ( t )  term  already  included i n  Eq.  (8-24). N m  from 
E q s .  (8-231, (8-501, (8-54) 

x(x) = &X)+ + log' 
1 - x  (e) 

where D(x) i s  defined in Eq. (8-47). In  t h i s  case,  the  only homogeneous 
solution  for f(x) is  a constant  (see  paragraph  (e) i n  Sec. 111) so tha t  
i n  Eq.  (8-20) 
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The solution (8-47) now becomes 

f (x)  = F(x) log (s) +c F( t )  + c4 
D2 (x) -1 D2(t)  (t-x) 

which i s  the  inversion  integral  solution of Eq. (2-11). 

There may be a question  about t h i s  solution (8-57) since A(x) i n  
Eq. (8-46) for t h i s  problem does not s a t i s fy   t he  H condition at the end 
points x = rt: 1, as required  in  Eq. (8-29). Also, t h i s  A(x)  term i n  
D2(x) i n  Eq. (8-57) forces  the f i rs t  term t o  be 0 at x = f 1, which i s  
a undesired  restriction on f (x ) .  To avoid  these  difficult ies,  
l og  (1-x)/(l-tx) can be  taken as some f in i te   va lue  at x = rt: 1, or f ( x )  
can be  calculated up t o  f 1 T Ax. Since F ( t )  i s  known only at specified 
points, it is  necessary t o  use  numerical  integration  in  the  calculation 
of f ( x )   i n  Eq. (8-57) so that the  end points can be omitted or approxi- 
mated. Since  the log (1-x)/(l+x)  term is  almost bounded and  has a rapid 
change to   i n f in i ty   fo r  a very s m a l l  ozr at the end points any approximation 
for   the  end points w i l l  have l i t t l e   e f f e c t  on the  values of f ( x )  a t  other 
points. 

Numerical Integration  for  Inversion ~ ~- Integral  

For the  calculat im of f ( x )   i n  Eq. (8-57) by numerical  integration, 
the  same procedure,  except a t  end points., as for  the  collocation method 
i n  Sec. V I  was used. The trapezoid  rule was used and all log  (1-x)/(l+x) 
terms in  Eq. (8-57) were approximated by 

as given i n  Eq. (6-12 ) . Thus 
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I n  matrix form, Eq. (8-60) i s  

{f) = [GoI{F) + C4[1I  

(8-60) 

(8-61) 

= 30.0 = DZ , 

where Aij and Aii are  defined  in Eq. (6-12)  except as noted above. To 
evaluate  the  constant C4, the  condition f(0) = 0 was used so that 

with 
GiJ = G o i j  - GOY21, j  , 
q, = 0.2032 = -G" , 
G~~ = -0.0250 = -G,,,-~ , M  . I 

\ 

(8-64 ) 

The special  values of Df , h1 , and Ga were arrived at by a special  
integration over the  interval  -0.975 t o  -1.0. A t  x = -1, the  integrand 
in   t he   i n t eg ra l   i n  Eq. (8-57) becmes  inf ini te  as t +-1. The value f o r  
G1, which represents this area *om -0.975 t o  -1.0 w i t h  F = constant 
was obtained by a numerical integration from -0.975 t o  -0.999 and by 
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where the f12 term i n  (8-57) was  dropped as small  compared t o  the log2 
term. The same result holds at x = 1, t = 1. For all xi points # k 1, 
as t + k  1, the  integrand is 0. The integration  over -0.975 t o  -1.00 
for  these  points was approximated by the Df i n  Eq. (8-62)  and by G2= i n  
Eq. (8-65 ) . 

It should  be  noted that the  solut ion  in  Eq. (8-57) i s  not  necessarily 
unique. A more restr ic ted  solut ion,  making f (x)  zero at both  ends, can 
be  obtained by taking X(x) = constant in Eq. (8-55). This gives  the 
solution 

f ( x )  = ' + -  
D2 (x)  D(x)Jl D ( t )  (t-x) 

(8-66) 

which differs  from that  in Eq. (8-57). This constant  value  for X(x) can 
be obtained by considering G ( t )  i n  Eq. (8-48) as a r e d  varriable  expres- 
sion so that, with log( -1) = fli, 

Thus, 8 = 0 i n  Eq. (8-49) and X(x) i s  constant. 

If f (x) i s  actually  zero a t  the ends,  then  both  solutions (8-57) 
and (8-66) may be the same. This was found t o  be t rue   in   the  example 
of the hump discussed i n  Section IX. 

IX - COMPARISON OF THE VARIOUS SOLUTIONS 
FOR SELECTED " P L E S  

In  Sections I V - V I 1 1  various  solutions of the integral  equations 
(2-U) or  (2-12)  have been obtained. All of  the  solutions have been 
expressed in   the  form 

where [ G I  i s  a matrix that operates on a se t  of hown values  of  the  F(x) 
function  to produce a s e t  of values  of  the unknown f(x)  function. The 
elements of the [ G I  matrix depend upon the method of solution.  Since 
all of the  solutions are approximate  because  of  numerical integration or 
because of a finite  functional  representation or because  of  both of these 
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approximations, there i s  no reason t o  expect the  [GI matrix t o  be  unique 
or t o  expect any two so lu t ions   to  have exactly the same elements i n   t he  
[GI matrix. However, i f  the  solutions  given by the  various methods are 
t o  agree  for a broad  class of F(x)  functions , then  there  should  not be 
much variation among the elements of the  [GI matrices fo r  the same 
boundary conditions on f(x).  

In order t o  evaluate  the  various  soluticms,  several examples have 
been selected  for which the  exact  solutions  are known. The solutions 
given by the various methods are then compared t o  each other and t o   t h e  
exact  solution  for  these examples. The methods of  solution that do all 
the examples the best and which appear t o  cover the  largest  c l a s s  of 
F(x)  functions may then  be  considered t o  be the  bet ter  methods of solutio1 
Also, a compaxi.son of two selected rows of the [GI matrices i s  made for  
the methods in   o rde r   t o   e s t ab l i sh   c r i t e r i a  as t o  which method of solution 
may be better.  

In   order   to   ident i fy  a l l  of  the methods  of solution, a summary 
(Table I) is  presented below, which gives  the form of  the [GI matrix  for 
each method  and gives  the  reference  equations  for each matrix i n  [GI. 
Reference will be made t o  t h i s  table  in  the  following  discussion. 

To compare resu l t s  given by the [GI matrices  in Table I when 
used i n  Eq. (9-l), all calculations were made for  40 equal  intervals on 
the   l ine   across   the  mirror, giving 41 points. Thus the [GI matrices  are 
all 41 by 41 (except method 8, i t e ra t ion ,  where the end points were 
omitted, and method 6 which was not  calculated as it gives  results at 
unequal nrr in te rva ls ) .  Examples using method 6 are given i n  Ref. 2. 

Example of Hump.  Assume that on a line  across  the  mirror, an 
imperfection  in  the form of a loca l  hump occurs with the shape  given by 

f ( x )  = (1 - z2)2 , z2 5 1 , 
= o  , z 2 2 1  (9-2) 

x - a  z=- , a and b are  selected  constants . 
b 

This particular  type of imperfection was  used by Linfoot i n  Ref. 1, 
except  he assumed a symmetrical  case w i t h  two hmps.  Substitute this 
f (x) i n to  Eq. (2-11) and in tegra te   to   ge t  
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Table I - Summary of [GI Matrices for  All Solutions 

Method Reference Eqs. for  [ G]  Matrix 
No. Matrices i n  [GI  Eq. No. Formula T i t l e  

1 

4-19,  4-23 (4-27) [Y][BTB]'l[B]T Power Series C 2 

4-19,  4-16> 4-llb,  3-1 (4-21) [Y1rK]-l[X][H] Power Series B 

3 5-18, 5-12, 5-13, (5-20) 4 [Sl[I  f K l - l [ C l [ H l  Fourier  Series A, 
trapezoid  rule 5-14, 5-16, 3-1 ll 

Fourier  Series A, (5-24) - [S][I f K ] - l [ D ]  2 

special   rule  112 
5-18,  5-12, 5-13, I 5-14, 5-23 

6 1 Fourier  Series B, I (5-46) .- [T l [Ql ' l [D]  1 1 ~ 5-47, 5-33,  4-8, 5-48 
Katzoff  procedure ll 

1 8-62,  8-59, 6-12 

. 



F ( x )  = -2z3 +-g z - (1 - z2)' log I kx I , z2 < 1 , 
3 l + z l - x  

4 
- 3 '  

= + -  z = k 1 , respectively, 

32 3 9  

The form for z" > 1 has been  changed from that  given by the  integration 
i n  order to  obtain a form which i s  more accurate  for  large  values  of z .  
Graphs of E q s .  (9-2) for   f (x)  and (9-3) for  F(x) with a = 0.6 and 
b = 0.2 are shown in Fig. 9-1. 

Because of the numerical  integration  in  the  various methods, as 
has been pointed i n  paragraph (b) of Section I11 and in  E q s .  (6-4) and 
( 6 - 5 ) ,  the  derivatives of the  funct ion  f (x)   in  Eq.  (9-2)  should  be 
examined. Now from Eq. (9-2) 

df 
" - - -  4z (1-22) , z" < 1 , 
dx b 1 

= o  y z 2 > 1  , I (9-4 1 

whence f ' ( x )  i s  continuous for  -1 5 x 5 1. Thus, from Eq. (6-4), the 
integrand  in Eq.  (2-12)  i s  continuous. However, the second derivative 
i s  discontinuous at z = k 1, 

d" f 4 12z2 - = "  
dx2 b2 b2 

+ -  9 z 2 < 1  J I 
= o  , z 2 > 1  , I (9-5 1 

whence from Eq. (6-5) ,  the first derivative of the  integrand  in 
Eq. (2-12) i s  discontinuous at z = k 1, and the  higher  derivatives  are 
in f in i t e  at z = k 1. 

In  order t o  examine the  derivatives of the  integrand 



2.0L - E x a c t  F (x), Eq.(9-3) 

- -0" Modification to F(x), 
See Fig. 9-2 for f ( x )  

I .o 

I 

-3.0 I- 
Fig. 9-1. Exact F(x) and f(x) for Hump Case 



= o  y 2221 y p21 . (9-11 1 

T a k e  the  case of Eq.  (9-10) and different ia te  with respect   to  t, whence 

- dg = ( l - Y 2 > 2  - 
dt  

- =  d2g 
d t  

..... ............. 

These r e su l t s   i n  E q s .  (9-12) - (9-14) show that the  higher  order  deriva- 
t ives  of g ( t  yx) are  very  large a t  and near z = f 1 for  a l l  < 1. This 
implies  that a lower order  numerical  integration rule may give  better 
results  than a higher  order  rule  (see  paragraph  (b) i n  Section 111) for  
this particular example. To check t h i s  implication,  several  different 
rules were used for  some  of the methods in  the  calculations  for this 
example. 
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The matrix  [F] i n  Eq. (9-1) was calculated for 41 values of x at 
i n t e n d s  of Ax = 0 .O5 for -1 5 x 5 1 using  the Eq. (9-3) with z = 5x -3 
(a = 0.6 and b = 0.2 i n  Eq. (9-2)). The [GI matrices as defined i n  
Table I for  the  various methods were then  used t o  give fi at the same 
41 points. The r e su l t s  are shown i n  Table 11. 

All of the methods located  the hump and dl methods, except method 3, 
Fourier  Series A with trapezoid  rule, and method 8 using Eq. (7-5) i n  
the   i t e ra t ion ,  gave a satisfactory  representation of the hump. However, 
a study of the Table I1 indicates that some of the  methods gave smaller 
m a x i m m  deviations  than  others. Method 9, the  inversion  integral,  appears 
t o  give  the  best   results with the  trapezoid and  Simpson's rules  giving 
essent ia l ly   the same results.   Methodl,  power ser ies  By shows s l igh t ly  
larger  deviations  in  the  region of the hump fo r  a 5-point  integration 
ru le  as compared to   the  t rapezoid and Simpson?s rules .  This indicates 
that even the  large  higher  order  derivatives of  Eq. (9-12) - (9-14) do 
not have much effect  on the  accuracy of the  integrat ion  rules   in  t h i s  
case. However, in t h i s  method 1, the  end point  values  are much improved 
by the  higher  order  rules. This occurs  because the  spacing of the  points 
i s  too  large  to   give a fair   representat ion of xn (n  of  order 20) when x 
approaches f 1 a t   t he  ends. A higher  order  rule w i l l  natural ly  improve 
this representation  near  the ends. In method 5, Fourier  series By the  
equal Ax answer corresponds to  using an interpolation  matrix [IM] t o  
convert  the Fi values i n   t h e  Table I1 to  equal  A6 values needed in   t he  
calculations,  while  the  equal A0 answer corresponds to   calculat ing Fi 
a t  equal A0 intervals   direct ly  from Eq.. (9-3) and deleting  the [IM] matrix 
i n  [GI. The l a t t e r  answer appears t o  be s l i g h t l y   b e t t e r   i n  t h i s  example. 

Since methods 3, Fourier  series A with trapezoid  rule, and 8, 
i te ra t ion ,  did not  produce answers as good as the  other methods in   t he  
hump example, and since  these methods have other drawbacks already 
discussed in  the  description of the methods, Sections V and V I I ,  no 
further  consideration w i l l  be given to   these  two methods i n   t h e  remaining 
examples and discussion. Also, only  the  equal Ax case will be used for  
method 5, Fourier  series By in  the  following examples. 

Example of  Modified Hump. In  order  to examine the  behavior  of the 
solutions when a large  slope change occurs in   F(x) ,  a modification  to 
the above hump example was made by taking  F(x) = -2.0 a t  the  points 
x = 0.40, 0.45, 0.50, 0.55 and 0.60 (see  Fig. 9-1). Such a modification 
not  only  gives an extreme change in  the  F(x)  slope at x = 0.40 and 
x = 0.60, but also could  represent a physical   s i tuat ion  in  which the 
l i g h t  intensi ty  is  too weak t o  show a variation  for  F(x) < -2.0. The 
results  for  f(x),  the  mirror  surface  deviation,  given by the  various 
methods for  this  modified  F(x) a r e  shown i n  Fig. 9-2. The graph  covers 
the  range of 0.2 5 x.<  0.8. For the remainder  of the  mirror  line, all 
methods gave s m a l l  values ,   f (x)  < 0.05, except  for power ser ies  By which 
gave larger  values at x = f 1, the end points. The exact answer for  
f ( x )  i s  not known, but i f  the  inversion  integral  i s  accepted as being 
the  closest   to  the  correct  result ,   then  the  function methods, power ser ies  
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Table 11. Example of Hump Case (Eq. 9-21 

Method -I @ @ 
t t 

x F(x) Exact B B B C A A B B 
f(x) pmv S u i e a  m e r  Series P w e r  seriel mer Series Fourier Serle l  Fourier Serier Fourier Series Fourier Series C d o u t i m  Collocatim Iteratim I t u r t i m  m a l m  musim 

(Equal L x )  ( E q d  AX) (special rule) (special rule) 
Inturd nltwrl 

Trapezoid Slmpsm 5-Point Trapezoid Special Rule Equal &x Equal M Trapezoid Slmplm 5th I t e r a t i m  5th I t a r a t i m  P . p z o i d  8- 
Ep. (74) Q. (7-5) 
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.d .a6 .M)2 .OW .m +.m 

-.w1 
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-.w2 
-.w5 .w5 .am .m .021 -.m +.m 

- .&J - .153 0 ,033 .w3 
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.w2 .a% .074 
.w5 

-.014 
.a6 

.w3 
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-.015 
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See  Fig.(S-l)  For  Modified F(x) 
A Power  Series B (trapezoid  rule) 
v Power Series C 
o Fourier  Series A (special rule) 

0 Fourier Series B(equal  Ax) 
-0 col location  (Simpson's  rule) 

--+-Inversion Integral (trapezoid  rule) 

0 

-2 

.8 

I 
Fig. 9-2. f(x) for  Modified Hump Case 



and Fourier  series,  appear t o   o s c i l l a t e  about the  inversion  integral 
curve  and  thus  represent it approximately. The representation  appears 
t o  be as good as could be expected  with  twenty  constants in the  function 
solutions. The collocation  solution  appears  to  represent  the  inversion 
integral  solution  with a high  frequency  large  amplitude  oscillation. 
Since  the  collocation method has no smoothing function  effect in it, it 
may be expected t o   o s c i l l a t e  on functions  with  large  slope changes or 
with  discontinuities. Further discussion of this  deficiency of the 
collocation method in given below i n   t h e  G matrix paragraph. 

-ample of  Straight  Line. A s  pointed  out in paragraph ( f )  of 
Section 111, the  method of  solution  should  properly  solve  the  case of a 
constant  F(x), which produces a rotat ion of the mirror or a s t ra ight  
line  deviation  across  the mirror. To examine t h i s  case,  [F] i n  Eq. (9-1) 
was taken as Fi = -40.0 at all 41 points so that the  exact  slope of f (x) 
i s  20.0 with f(-1) = -20.0, f ( x )  = 20.0, and fZl = 0, f22 = 1.0, etc. 
Methods 1, 2,  4, 5, 7, 9 i n  Table I were used with  the  following  results. 

Method 1, power ser ies  B with trapezoid  rule, gave a large  osci l la-  
t ion  with deviations of order of k 2.0 from the   s t ra ight   l ine  and with 
T 38.78 instead of T 20.0 a t   t h e  ends. A s  pointed  out above in   t he  
discussion  of  the hump example, this fa i lure  of the Power ser ies  B method 
i s  due t o   t h e  poor representation of xn near  the ends. This affects   the 
G matrix, which shows large  effects when f ( x )  has i t s  largest  value a t  
the  ends. See discussion  of  the G matrices below. 

Method 2, power ser ies  C y  gave the straight l ine   t o   f i ve   s ign i f i can t  
f igures a t  a l l  41 points. 

Method 4, Fourier  series A wi th  special   rule,  did not  give  the 
s t ra ight   l ine .  It has large  osci l la t ions w i t h  deviations as large  as 
? 10.0, with k 20.0 deviations at the  ends. This fa i lure  of Fourier 
ser ies  A i s  due to   t he   r e s t r a in t s  imposed  by the sin 11x functions  being 
zero at the ends. This res t ra in t   ge ts   in to   the  G matrix, which means 
tha t   fo r  f (x) odd and not  zero at the ends, the  method w i l l  give poor 
resul ts .  In this   case,   the   ser ies  m u s t  represent a function with a 
discontinuity at both ends. See discussion of the G matrices below. 

Method 5, Fourier  series B with special   rule  and equal Ax's, gave 
the straight l ine   to   four   s ign i f icant   f igures  a t  a l l  41 points. 

Method 7, collocation wifh Simpson's rule ,  gave the   s t r a igh t   l i ne  
t o  at l e a s t  eight significant  f igures  (only  eight  digits were printed 
out) at all 41 points. 

Method 9, inversion  integral with trapezoid d e ,  gave the straight 
l ine  to   four   s ignif icant   f igures  at a l l  41 points. 

The above three examples of the  hmp,  the  modified hump, and the  
s t r a igh t   l i ne  show that all of the methods except  possibly  the  inversion 
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integral ,  appear t o  have deficiencies. Some methods do be t te r  on one 
type  of  function  than on other  types. Althougn power ser ies  B and 
Fourier  series A did   sa t i s fac tor i ly  on the hump and agreed  with  the  other 
function methods on the  modified hump, they  failed completely on the 
s t ra ight   l ine .  The collocation method did  very  well on the hump and the 
straight  l ine,   but  did  poorly on the  modified hump.  The  power ser ies  C y  
the  Fourier  series B, and the  inversion  integral  methods appear t o  be 
the most consis tent   in   the  three examples considered.  In  order to 
determine which may be the   be t te r  methods for  a l l  types  of  possible 
functions f (x) and F(x), an examination of the  G matrices was  made for  
the  various methods. 

The G Matrices. To study  the  behavior of the G matrix i n  Eq. (9-1) 
for  the  various methods of  solution,  graphs of two typical  rows of the  
G matrices were constructed.  Figure 9-3 shows  row 16, which gives f16 
a t  x = -0.25,  and  Fig. 9-4 shows  row 33, which gives f33 at x = 0.60. 
Methods 1, 2, 4,  5, 7 ,  9 i n  Table I aze shown i n  Figs. 9-3 and 9-4. 
Method 1, power ser ies  B with  trapezoid  rule, method 2, power ser ies  C y  
and Method 4, Fourier  series A with  special rule are too  close  to dis- 
tinguish on the graph,  except at the ends . For row 16, at x = -1 , 
point 1, power ser ies  B gives 0.0077, power ser ies  C gives 0.0000, and 
Fourier  series A gives 0.0538; for  row 16 at x = 1, pt .  41, power ser ies  B 
gives 0.0191, power ser ies  C gives 0.0001, and Fourier  series A gives 
0.0520. 

Since  these  differences  in  the end values  occur i n  all the rows  of 
the G matrices  for methods 1 , 2, and 4, it appears tha t  these  large end 
values  in power ser ies  B and Fourier  series A are the cause of the  fa i lure  
of these two methods t o  give  the  proper  results in the   s t ra ight   l ine  
example above. Since  the power ser ies  C has s m a l l  end values i n   t h e  
G matrix,  agrees with the  power ser ies  B and Fourier  series A elsewhere, 
and gives  the  proper  straight  line, it would appear t o  be the  best of 
these  three  function methods. 

In  Figs. 9-3 and 9-4, the  Fourier  series B deviates  sl ightly from 
the  other  three  function methods and has small  values at the  ends 
( G l e y 1  = 0.0003, &6,41 = -0.0028). On the whole, it should  give  results 
similar to power ser ies  C. 

In  Figs. 9-3 and 9-4, it appears that the  function methods are 
actually  representing  the  inversion  integral  curve as well as they can 
with  twenty  constants. The inverai.on  integral G matrix, which i s  l imited 
i n  accuracy  only by the  numerical  integration  for each row, should be 
the  best  overall  matrix  (except  possibly  the f i rs t  row and l a s t  row). 

The peak values in the rows of the  G matrix occur on ei ther   s ide 
of the  origin  (x = ' O ) ,  which is  the  res t ra int   point   for   the  solut ion to 
make f ( 0 )  = 0, and on ei ther   s ide of the f i  point  being  calculated 
( 6 6 y 1 5  and G 1 6 , I 7  i n  Fig. 9-3 for  row 16 giving f16). Since  the form 
of  the  integral  Eq. (2-11) gives  large  values in the  integrand  for 



I 

I! 1 t ne= x, the point at which f (x)  i s  being  calculated, it is  evident 
that  these  adjacent  values  should be  emphasized i n  the solution. O f  

f a i l  t o  give  proper emphasis t o  them. For these reasons, the inversion 
integral  method i s  considered t o  be the best method for all types  of 
possible  functions. 

j': necessity,  the  function methods must smooth out  these peak values and 

The en t i re  G matrix for  the inversion  integral method using  the 
trapezoid rule for   the numerical  integraticm i s  given i n  Appendix C. 
It may be noted that the  inversion  integral  G matrix with Simpson's rule  
has s l ight ly   larger  peak values  than  those shown in  Figs.  9-3 and 9-4 
for  the  trapezoid rule. 

The collocation method shows a high  frequency oscil lation, with 
large  amplitudes,  about  the  inversion  integral  curve i n  Figs. 9-3 and 
9-4. It i s  evident that i f  F(x) has .a sharp change or is  discontinuous, 
then  the  large  values  in  the  collocation G matrix can  magnify the dis- 
continuity and give  incorrect  values  for  f(x).  Thus, the  collocation 
method, i n   s p i t e  of i ts  performance on the   s t ra ight   l ine  and the hump 
example, it is not a good method f o r   a l l  types  of  functions,  particularly 
those w i t h  discontinuities. 

Evaluation  of  the  Various Methods. On the  basis of the above 
"" 

examples and examination of the G matrix, an evaluation  of  the  nine 
methods of  solution  Listed in Table I can be made. Although a l l  the 
methods can solve  certain problems, the  best methods are  those  that can 
solve  the  largest  class  of problems,  Since  F(x) must be  measured at 
points, and f ( x )  may represent any conceivable  deformation of the mirror, 
it is  essent ia l  that the method of solution  handle  almost any type of 
function,  whether  continuous or not. From t h i s  viewpoint,  the  following 
evaluation i s  made: 

1. 

2. 

3. 

4. 
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Method 9, the  inversim  integral ,  i s  the  best   overall  
method. It will handle most any case. 

Power ser ies  C y  method 2, and Fourier  series By 
methods 5 and 6, are  the  best  function methods. They 
will handle most any case. 

Collocation, method 7, i s  simple and satisfactory for 
smooth functions,  but i s  no good on discontinuous 
functions. A violent  oscil lation  in  the  solution 
indicates  the method has failed.  

Power ser ies  B, method 1, and  Fourier  series A, 
methods 3 and 4, are  unsatisfactory  because of  end 
points  representations and restr ic t ions.  

I teration, method 8, is unsatisfactory because  of end 
point   res t ra ints  and  numerical  integration difficulties. 

Up t o  t h i s  point  the  discussion and evaluation  of  the  various 
methods has been  concerned w i t h  the  solid mirror. Section X takes up 
the  Cassemain  mirror, or the  mirror with a central  hole. 
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X - SOLUTIONS FOR CASE OF A CENTRAL HOLE 

The integral equations t o  be solved  for  the  Cassegrain  mirror  are 
given i n  Eqs. (2-13) o r  (2-15). Take Eq. (2-15) i n   t h e  following form 

1 

(10-1) 

where R i s  defined  in  Fig. 2-3. Theoretically,   this Eq. (10-1) can be 
solved by any of the  methods described i n  Sections I V - V I I I .  However, 
on the premise that  the  evaluation of the methods for  the  solid  mirror 
in  Section I X  holds  for  the  Cassegrain  mirror,  only  the  better methods 
w i l l  be  used for   this   case.  The  power ser ies  C y  collocation and inversion 
in tegra l  methods of  solution,  as  modified  for  the  hole  case,  are  described 
below. The Fourier  series By  method 6 i n  Table I, i s  described  in Ref. 2 
for  the  hole  case,  together  with examples. It w i l l  not be covered  here. 

Power Series C f o r  Hole. A s  in   Sect ion I V Y  take 

i n  Eq. (10-1) and in tegra te   to   ge t  

whence J 

(10-2 ) 

(10-4 ) 

These Eqs. (10-4)  and (10-5) correspond t o  Eqs. (4-22)  and  (4-23) so 
t ha t  from Eqs . (4-26) and (4-28) , 

where the elements of [Y] and [B] are  given i n  Eqs. (4-19) and (10-5) , 
respectively. 
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I 1 1; 
Results  using power ser ies  C f o r  severaJ- examples with a hole are 1 given below and compared t o   t h e   r e s u l t s  of the  other methods. 

i 
I Collocation Method f o r  Hole. For 2R as the  width  of  the  hole on 

the   pas t i cu la r   l i ne  on the  mirror  (see  Fig. 2-3), take (M/2)-1 = 20 
equal  intervals on each side.  This  gives  21  points on each side,   or 
M = 42 t o t a l  number of points,  including  four edge points. 

i # l  , M - Y g + 1  , M , 
2 2 

A (M,M-2) = 1 [H(M) - H(M-2)] , 
2 

A ( M , M - ~  = - 2~ (M) - H ("1) , 
A % j  - - H.3 P 

XJ - xi 
, except above and i # j 

M 

Take 

(10-8) 

I (10-9) 

(10-10) 

(10-11) 



Now, from paragraph  (e)  of  Section 111, there  are two homogeneous 
solutions  for  the  hole  case. Thus two points must be f ixed on the  mirror 
in   order   to   obtain a solution by the  collocation method. Any solution 
thus  obtained will include  the homogeneous solutions (3-6) and (3-7) or 

The value of C1 i s  of no consequence as it represents a translation  of 
the  reference  for f (x) ,  but  the  value  of C2 should be as s m a l l  as possible 
t o  keep the  apparent  distortion C,/x s m a l l .  In  most cases  the  smallest 
value  of C2 w i l l  be given by f ixing  the two points at the edges  of the 
hole. However, i f  f (x )  i s  larger at the  edges  of the  hole  than at the 
ends,  then the ends would give a smaller C2. Note tha t  C2 = 0 for f (x) 
even. 

Use the conditions 

f(F) = f ( - R )  = 0 I 
f(F + 1) = f ( R )  = 0 I 

so that, corresponding t o  Eq. (6-15), 

s(F M M  ,& s(g + 
2 

This gives  (see  Section VI) 

where [A] i s  defined  in Eq. (10-11) and [B] i n  Eq. (10-14). 

(10-14) 

Results  using  the  collocation method m e  given below. 
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Inversior:  Integral  for Hole Case. The integral  Eq. (2-13) for  the 
Cassegrain mirror is the same as Eq. (8-29) with 

x = to L = l ines  -1 t o  -R and R t o  1 I 
(10-16) 

and the  solution is  given by Eq. (8-38) as 

where 
e ( t )  = arctan s 

log 1" - t - t + R l ]  
l + t t - R  

(10-18) 

X 8 log G ak Ak 

-1 0 0 0 0 

-R fl 2sc i 1 -1 

R O  0 0 0 

1sc 2sc i 1 -1 

(10-20) 



Thus , Eq. (8-17) gives 

T ( z )  = (Z+R)'l(l-Z)'l 

From Eqs  . (8-12)  and (10-18) 

1 I e ( t ) d t  P(x) = - 
3 q t - x  

(10-21) 

(10-22) 

where L i s  -1 t o  -R and R t o  1 and O ( t )  i s  given by Eq. (10-19). By 
analogy to   the  integrat ion of the  corresponding Eq. (8-51) for   the  sol id  
mirror with   the   resu l t   in  Eq. (8-54), the  solution  for Eq. (10-22) was 
deduced as 

This resu l t  w a s  verified  very  closely by a numerical  integration  of 
Eq. (10-22) using  the  trapezoid  rule and the [A] matrix  in Eq. (10-ll). 
That is, 

[P] = - 1 [A][e] , 42 points (10-24) 
3( 

where A i i  = 0. 

Put Eqs.  (10-23) and (10-21) in to  Eq. (8-23) to   ge t  

X(X) = c , ( ~ - x ) - ~ ( x + R ) - ~ ( ~ - x )  (x+R) x -~D(x)  

where D(x) is defined i n  Eq. (10-17). In this  case,   the homogeneous 
solut ion  for   f (x)  i s  given by Eqs. (10-17) and  (8-20) as 

- c4 - c 3 + -  
(10-26) 

a 
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, d l  

!i 
which agrees  with  the homogeneous solution  given in paxagraph (e)  of 
Section 111. Equation (10-17) now becomes 

D2(x) = fl2 + log2 1'- - 
l + x x - R  - x x + R l  (10-28) 

which is the  general  inversion  integral  solution of Eq. (2-13). 

It should be noted  that   this  solution  in Eq. (10-27) i s  not unique. 
Other forms for  X(x) i n  Eq. (10-25) are 

X ( X )  = C ~ D ( X )  and X ( X )  = C 2  (10-29) 

whence other  solutions 

f ( x )  = - F(x)  log  
D2 (x) 

m e  

F(t)dt + cs + c6 , (10-30) 
l + x x -  D 2 ( t )  (t-x) X 

" 
F(t)dt + C 7  + %i (10-31) 

X 

It was found that  the  particular  integrals  in  the  solutions (lO-27), 
( l O - 3 O ) ,  and (10-31) behaved as i f  two res t ra in ts  were present, or 
f (+a) = 0, fo r  x = + a points on the mirror. The value of a i s  different 
i n  each solution  for  the same function. For these  reasons  the  mirror 
was restrained at the edge points, x = + R, or f (S) = 0, which corre- 
sponds t o   t h e   r e s t r a i n t s  used in  the  collocation method. Note tha t  by 
replacing t by t - x + x in   the  integrand  in  Eq. (10-27), the  solution 
i n  Eq. (10-30) i s  obtained  with a term (C,/x) added. Since  the  solution 
i n  Eq. (10-31) makes f(1) = f(-1) = 0, it i s  more restr ic ted.  However, 
for   the llhumpl'  example given below, all three  solutions axe essent ia l ly  
the same. 

The numerical  integration i n  Eq. (10-27) was carried ou t   i n   t he  
same  manner as   for   the  sol id  mirror, Eqs .  (8-58) - (8-65), where a l l  log 
terms are  approximated by -AIi i n  Eq. (10-11). Thus 

I 



". . . 

.) 

where  from Eq. (10-11) and from special   in tegrat ions  for   the edge values 
(see Eqs. (8-62) and (8-65) and discussion af'ter Eq. (8-65)) : 

Aid  = , i # j  

A i , i - l  = - Hi-l - Hi , i # 1, E + 1, 

H5 P 
xj  - xi 

Y 

1 
2 

G o (  --,--) M M  = -Go($ + 1,- M + 1) = -0.3180, 
2 

Gm,3(2,1) = - Go(M-l,M) = -0.0283 , 
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As noted above in the   co l loca t im method, the smallest value  of 
C*/x i n  most cases will occur i f  the  two points at the edges of the  hole 
are  fixed. Thus from Eqs.  (10-13) and (10-34) 

Now, Eq. (10-34) becomes 

G i j  = Goid - (1 - % ) G o  (;,j) - 2 (1 + R)Go(F + 1, j )  (10-40) 
xi xi 

where GOij i s  defined i n  Eqs.  (10-35) - (10-37). 
Results  for  the  inversion  integral method are  given below  and 

compared to   the  other  methods. 

Comparison ~ ~" of  Solutions ~~ for  Cassegrain  Mirror  for  Selected Examples. 
The three methods, power ser ies  C ,  collocation, and inversion  integral, 

~ ~~~ 
" - ~~ ~ 

described above were appl ied  to   several  examples and the   resu l t s  comp&ed. 

1. The example of a hwzp used above in  Section IX for   the  sol id  
mirror was also used fo r   t he  Cassegrain  mirror. I n  this case 

f (x )  = (1-z2)2 y z2 2 1 

= o  , z 2 > 1  
z=- x - a  

b 
, a = 0.65 , b = 0.175 , ( 10 -41 ) 

R = 0.125 , 



whence 
F(x) = - 2z3 + - z - ( I - z ~ ) ~  log 10 

3 

4 
3 

= + -  , z = + 1  , 

1 - z l - t x x - R  
l + Z l - x x + R  

r 
- 2 2 
" + - -  (z2-1)2 L' + - + log( e)] , 

32 3z3 z 323 z + l  

' .  I (10-42 ) 

This F(x) was calculated at 42 points (20  equal  intervals on each s ide)  
(R = 0.125) and the  G matrices  used to   ca l cu la t e  f (x) at the same 42 
points. The r e su l t s  were similar to  those in Table I1 for   the  sol id  
mirror with the  following maxinwn deviations from the  exact answer i n  
Eq. (10-41) : 

P.S. (c )  Collocation  Inversion 
Integral  

Deviation +0.065 +O do33 +o -017 

-0 -048 -0 . 030 -0 .oog 

It should  be  noted that the   r e s t r a in t s   i n   t he  power se r i e s  C solution 
axe that f ( 0 )  = 0, which i s  not on the mirror, and f ( x )  be  continuous 
across  the  hole. This means tha t  this solution may have t o  be  translated. 
In   fac t ,  a t ranslat ion of + 0.08 was used for   the power ser ies  C solution 
to   ge t   t he   bes t   r e su l t s  a t  the hump.  Even so, the power ser ies  C solution 
deviated more than the  other two solutions.  Since f(S) = 0 was t rue  
i n  th i s  example, it appears that the   res t ra in ts  of f ( S )  = 0 used in   the  
collocation and inversion  integral   solutions had essent ia l ly  no effect .  

2. However, i n   t h e  example  of F(x) = -C = constant,   the  restrxints 
will affect   the   f (x)   solut ion.  With no r e s t r a in t s  or no  homogeneous 
solutions 

F = - C gives   f (x)  = c x  
2 (1-R)  

On the  other hand, with r e s t r a in t s  f ( 2 )  = 0, and 

. f (x)  = x + c 1 + -  c2 
2 (1-R)  X 

(10-44) 



a 1 it follows  that 
I 

whence 

R2 c 1 = 0  , c 2 = -  C Y  
2 (1-R) 

f (x )  = C ( x - $ )  . 
2 (1-R) 

The three methods were used for  F(x) = -35 or C = 35,  and R = 0.125, 
whence 

f = 20x i n  Eq. (10-44) , (10-48) 

f = 20x.- 0*3125 i n  Eq. (10-47) (10-49) 
X 

The  power ser ies  C method gave f ( x )   i n  Eq. (10-48) to  three  places.  
The collocation method gave f ( x )   i n  Eq. (10-49) to  four  places. The 
inversion  integral method gave Eq. (10-49) to  three  places.  

The above example of F(x) = constant  has  other  implications.  In 
paragraph (f) of Section 111, it was pointed  out t h a t  the  reference  scale 
for F(x) may be arbi t rary so tha t  a constant change i n  F(x) may be only 
an apparent r i g id  body rotat ion of the  mirror and not a real   d is tor t ion 
on the  l ine.  If an apparent r i g id  body rotation i s  occurring,  then  the 
collocation and inversion  integral methods w i l l  show not  only  the  rotation 
but  also an apparent  distortion of the form C2/x,  due t o   t h e  two fixed 
points on the mirror surface  used in   these methods. The  power ser ies  C 
and Fourier  series B methods w i l l  show only  the  rotation, as these methods 
do not  restrain  points on the  mirror. If the  function methods were s e t  
up t o  give two restraints ,   they would also show the  apparent C,/x term 
for  a constant change in  F(x),  whether r e a l  or apparent. 

On the  other hand, i f  a r e a l  C2/x type of distortion  occurred  in 
the  Cassegrain  mirror on some l ine ,  it is not  evident t ha t  any of the 
methods of solution can detect it, since  F(x) = 0 i n  this case. Appar- 
ently,  some other method of measurement  would have t o  be  used t o  detect 
such a distortion. However, it .seems unlikely tha t  a dis tor t ion of the 
form C2/x would occur on a mirror w i t h  R re la t ive ly  s m a l l .  The inherent 
large  s t i f fness  in the  circumferential  direction would tend  to   res t ra in  
the  mirror from such a distortion. 

3 .  The three methods were applied  to  the example of F(x) = - 35.0 
for  x I -0.125 and F(x) = 35.0 fo r  x 2 0.125, a case similar t o  one used 



by Katzoff i n  Ref. 2. In  this case, f (x) i s  an even f h c t i o n  and the 
C2/x term in the  collocation and inversion methods is zero.  After 
t ranslat ing  the power ser ies  C solution, it was found that all three 
solutions  agreed  within f 2 i n   t h e  th i rd  place. The shape of the curve 
i s  the same as that i n  R e f  . 2. 

4. The three methods were applied t o  the  example of 

F(x) = - l4 , f (x )  = - 1 
X X* 

Here f(EL) = 1.0 and f(kO.125) = 64.0. After  translation  of all three 
solut ions  to   give f (EL) = 1.0 , the maximum deviations from 1/x2  for  the 
42 points were +0.1 and -0.4 for  inversion  integral, +0.2 and -2.1 fo r  
collocation, +4.9 and -1.2, with  considerable  oscillation,  for power 
ser ies  C .  As  m i g h t  be expected  the power ser ies  C did poorly on this 
negative power function. On the other hand, since  f(x) i s  even in  this  
case, power ser ies  C was ab le   to   t rans la te  and do a reasonable  represen- 
t a t ion  of f (x) .  

5. To further  investigate the representation  of a negative power 
deviation by power ser ies  C ,  the example 

14 
3 F(x) = - 1 

X3 
, f (x )  = - 

was solved.  Since this i s  an  odd function, and power ser ies  C must be 
0 at x = 0, it i s  a diff icul t   funct ion  to   represent ,  going from 
f(1) = 1.0 t o  f(0.125) = 512.0. A s  expected, it did a very poor job, 
giving f(1) = 126, f ( O . 1 2 5 )  = 472, f(0.16875) = 510 instead of 208.1, 
f(O.3) = 370.0 instead of 37.0, e tc .  Thus, it would appear that the 
function methods, both power ser ies  and Fourier  series,  cannot  handle 
odd negative power type  deviations. O f  course, i f  desired,  negative 
power terms  could be added t o   t h e  power ser ies  methods so that they could 
represent  these  for  the  Cassegrain  mirror. 

This example 5 i n  Eq. (10-51) takes the form 

14 1 64 , f (x )  = - - - 
X2 x3 x 

F(x) = - 

when the  points x = fR are  restrained i n  the  collocation and inversion 
integral  methods. In this par t icular  example, the C 2  = -64 would be 
much smaller (C, = -1) i f  the end points x = f 1 were restrained  instead 



of  the points 
the inversion 

a t  the  edges of the  
integral  was set up 

hole. Huwever, since the G matrix for  
for   the  edges x = k R restrained, 

Eq. (10-52) w a s  compared to  the  inversion  integral   solution. The  maximum 
deviation was  at x = a.16875, where f ( x )  = 7183 instead of 7172 i n  
Eq. (10-52). By changing C 2  = -64 t o  C 2  = -65.9, the maximum deviation 
was less than T1.0. This indicates  there  are  sl ight  errors in the  
approximations for  the elements Go ( z,2) M 1.4 and Go (F + 172 M + 1) 

i n  Eq. (10-37), which are  introduced as a C/x error through Eq. (10-40) 
for  the  restraint   conditions.  

G .~ Matrices ~~- ~ ~ for  Cassegrain Mirror. To better  understand why the 
power ser ies  C solution was very poor in some of  the examples considered, 
the G matrices  for the three methods were examined. Figure 10-1 shows 
a graph of row 33 for  the  three methods. The inversion  integral row 33 
i n  Fig. 10-1 i s  nearly  the same as that in Fig. 9-4 for  the  solid  mirror 
case. The collocation row 33 i n  Fig. 10-1 i s  quite  different from Fig. 
Fig. 9-4, having much less   osci l la t ion.   In   fact ,   the   col locat ion graph 
follows  the  inversion  integral  quite  closely,  except  near column  number 
33 where it overemphasizes the  local  effect   for  point 33. Apparently, 
the   res t ra in t  of two points in this  case as cmpared t o  one point   a t   the  
or ig in   in   the   so l id  mirror case produced a damping effect  on the  colloca 
t ion G. matrix. The  power ser ies  C row 33 i n  Fig. 10-1 i s  radically 
different from Fig. 9-4, having much larger   osci l la t ions and f a i l i n g   t o  
follow  the  inversion  integral around column 33. This difference, which 
occurs i n  all the rows of the G matrix,  explains why  power ser ies  C does 
a poor  job on certain  types of functions  in  the  hole  case. 

The reason why the power ser ies  C method has the  large change i n  
the G matrix from the  sol id   mirror   to   the Cassegrain  mirror  appears t o  
be in   t he   r e s t r a in t s  for the  hole  case. No points are fixed on the 
mirror. Only the  origin,  which is  off  the  mirror, i s  fixed. With no 
points  being  specified  in  the  hole,  the power ser ies  C functions  appea 
t o  be insufficiently  defined  to produce the  proper G matrix. Also, it 
appears  that  the  frequency  of  the  oscillation in f ig .  10-1 i s  determined 
by the  hole  size, rather than  the mirror size.  This may indicate that 
the number of points and the  value of R, or t h e   r a t i o  between R and 
interval   s ize ,   affect  the behavior  of the G matrix  for  the power ser ies  
C method as well as for  other  function methods. 

Evaluation  of Methods fo r  Cassegrain Mirror. mom the above 
examples and discussion of the G matrices, an evaluation of the  three 
methods of  solution  used  for the hole  case i s  as follows: 



For a specified ~ ( x )  take 

where the  matrix A is  the numerical. integration  matrix  in Eq. (10-36) 
with rows 1, M/2,  (M/2) + 1, M omitted.  Since  the  integrals become 
i n f i n i t e  at the  edge points, F(x) at x = f 1 and x = k R cannot be 
calculated. However, these  points are included i n   t h e  numerical. in te-  
gration for F(xi ) at all inter ior   points .  A t  x i ,  Eq. (11-2) gives 

Assume g(x) t o  have the form of Eq. (9-2) as used in   the  l inear   case 
above 

g(x) = p(l-z2)2 , z2 < 1; 

= o  , z2 > 1; and 

z = -  x - a  
b 

, a = 0.6 , b = 0.2 , 
R = 5/41 , = 2/41 , 

where p i s  a factor   for   the magnitude of the  error.  Note 

p = (2yt)(max. e r ro r   i n  wavelengths) 

q m a x  = m a x .  error in wavelengbhs = p/& . 
or 

that 



For the linear case  used above p = 1/2%  and t h i s  case was used i n  
Eq. (11-4) t o  compare t o  the l i nea r  results. Figure U-1 shows the 
comparison for  F(x)  using  38-point  numerical  integration. The l inear  
numerical  integration and the  nonlinear  numerical are quite  close. 

Figure  ll-2 shows results of Eq. (11-4) for  several  values  of p; i.e., 

p = 6.2% Y Tmax = 3-12 

It can be concluded that large changes  occur i n  F(x) i n   t he  neighborhood 
of a f (x)  hump. 

For large  values of p,  g(x) i s  large and s in   g (x)  and cos  g(x) will 
osci l la te   with many cycles  over  the non-zero  range  of g(x). For the 
cases i n  Eq. (11-8) and Fig.  11-2, the approximate number of cycles  in 
s in   g (x)  and  cos g(x)  for 0.4 5 x 5 0.8 is  1/2 for  p = 1/2 5c and 
p = 10/25c, 2 f o r  p = 2fly 6 fo r  p = 6.2%. These cycles  are  unequal i n  
width, with  the  smallest width for  p = 6.2%  being = 0.045. Since  the 
interval  used for  the  numerical   integration  in  Fig.  11-2 was & = 0.05, 
it i s  evident  that   the  results  for  the p = 6.2%  case may not be very 
good. Either a smaller  interval must be  used or the  numerical  integration 
modified. 

where 

nx 
(11-10) 

If the  average of t - x i n  Eq. (11-2) i s  used for   the   in te rva l  A t y  then 
s i n   g ( t )  and  cos g ( t )  can  be integrated  across  the  interval  using  the 
approximation i n  Eq. (11-9). The r e su l t s   a r e  
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(11-11) 

The term Di replaces Si in   the  calculat ion of Ti i n  Eq. (11-3) and Ei 
replaces C i  in   the  calculat ion of Ui.  With these  terms,  the  results  for 
the p = 1/231, 10/23I, and 231 cases  are  essentially  the same. However, 
for   the  p = 6.251 case,  the peak at x = 0.4 i s  about  one-half as  large 
and more cycles  appear t o  be present. When twice as many intervals   are  
used  with the  D l  and Ei terms,  the p = 6.2%  case shows about six  cycles 
in F(x) of various  amplitudes and occurring in the range  of  the  g(x) 
hump. See p = 6.2% (modified integration)  case  in  Fig.  ll-2. A similar 
cycl ic   resul t   for   F(x)  was obtained  for p = 100. 

mom these  resul ts  it would appear that, i f  F(x) shows a cyclic 
shape i n  a region,  then  there i s  a large  deviation  in  the mirror i n  that 
region. 

In Section I11 for  the  l inear  case it was found a l i nea r   f (x )  = Clx 
produces a constant  F(x) = -2C1. Two cases  for  the  nonlinear  equation 
were calculated by  Eq. (11-4) with 

(a)  g(x) = x and (b)  g(x) = - - X 
10 
2.I.t 

(11-13 

which is  equivalent t o  qmax = f 1/4 at the ends. For case  (a) , F(x) 
vasied from -8.0 at edges  of the  hole  to -14.8 a t   t h e  ends,  being 
approximately  constant  over  the  middle half  of the  mirror. For case 
(b) ,  F(x)  varied from + 19.6 at edges of the   ho le   to  + 4.3 a t   the  ends, 
being  approximately  constant over the middle half of the  mirror. 
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X I 1  - SCALE  FACTOR PROHLEBE 

Above, F(x) = I - Io i s  assumed known. Io i s  calculated  for   the 
perfect  mirror. I i s  measured on the  actual  mirror . If K converts I t o  
scale of Io, then 

F(x) = - - I 
K Io  (12-1) 

It appears that K depends on the intensi ty  of the l i g h t  source  and on 
the  instrumentation to   r ead  I. To cal ibrate  the perfect  mirror w i t h  a 
given l i g h t  of intensi ty ,  &c. 

For a different  light in tens i ty  Q 

(12-2) 

Thus ,  i f  Kc can  be  determined for  the  f inished  mirror ( as perfect as 
possible)  using  the  specified  instrumentation and known light Q, then 
i f  the light Q can  be determined, Eq. (12-3) would seem t o  hold, 'whence 

A procedure t o  check K may be based on Eq. (12-1). If 

F(x) = F ~ ( x )  - C 

I FL(x)dx = 0 , C = 
L 2 (1-R ) 

(12-4) 

then from Section 111, a rotation  of the mirror  through a slope change 
of -C/2 (1-R) will change I and make the  new F be Fl . Thus a check K is 
(IR read after rotat ion) ,  
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I R d x  
K =  (12-6) 

It may be poss ib le   to  determine K d i rec t ly  by giving a s m a l l  known 
ro ta t ion   to   the   mir ror  or an equivalent  displacement  of  the  knife-edge 
and  measuring the change i n  I a t  several  points.  Since  the change i n  
F(x)  can  be  calculated  (line=  case) as -2C1, C1 i s  slope,  then 

at each point. If AI i s  constant,  then  the K may be  satisfactory.  

It should be noted  that an e r ror   in   the   o r ig in   for  I shows as a 
rotat ion of f (x)  and also an e r r o r   i n  K shows a ro t a t ion   i n  f (x). Thus, 
i f  f (x )  shows a large  rotat ion,  it probably means I and K are  not 
compatible , or the  knife-edge i s  not  central. 

Final ly ,   in   the Eqs. (12-2)  and (12-6) 

8 
3 

Iodx = - TI2 , no hole, 

1 (12-8) 
= 2a2(1-R) + 2 L  log'? 1- l - x x + R  - 1 d x  , 1 

l + x x - R  

for  hole of radius R. 

X I 1 1  - CONCLUSIONS AND RECOMMENDATIONS 

The l inear  integral   equation  for  the Foucault t e s t  of a mirror, 
so l id  or Cassegrain  type, can be solved by several   d i f ferent  methods. 
Since  the methods of solution  are approximate due t o  numerical  integration 
and/or finite  function  representations,   they  are  not unique. Although 
the methods may agree on resu l t s   for  some examples, they  disagree on 
other examples. The inversion  integral method appears t o  cover  the 
largest  range of possible problems wi th  good resul ts   for   both  the  sol id  
and Cassegrain  mirrors. The collocation method does well on many examples, 
particularly  for  the  Cassegrain  mirror,  but it fails  for  functions with 
discontinuities.  The function methods, power ser ies  and Fourier  series, 
do well on  some functions  but have various  deficiencies,   particularly 
for  the  Cassegrain  mirror. The i te ra t ion  method is  very poor  and i s  not 
recommended. 
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There  appears t o  be several  possible  procedures  for  calibrating 
i and scaling  the  input data for  the  integral  equation  solutions. The 

simplest  procedure may be t o  give  the  knife-edge a s m a l l  displacement 
and  measure the change in   t he   l i gh t   i n t ens i ty .  Since the change can be 
calculated in the  l inear  case,   the  scaling can be made by comparing the 
measured  and calculated  results.  

For various assumed functions  for  the  errors on the  mirror,  the 
light dis t r ibut ion on the  mirror can  be calculated from the  nonlinear 
equation by numerical  integration. Large  changes  occur i n   t h e   l i g h t  
in tens i ty   in   the  neighborhood  of a local  surface  deviation, whether 
linear  or  nonlinear. However, fo r  a large  nonlinear  deviation,  large 
changes may occur in  other  regions somewhat  removed from the  local  
deviation. 

It i s  recammended t h a t  further  investigation of the  nonlinear 
equation  be  conducted,  particularly w i t h  regard   to  

(a) input of a nonlinear F(x) solut ion  into  the  l inear  
equation and comparison of so lu t ion   to   o r ig ina l  assumed 
f(x) in  the  nonlinear  equation; 

(b)  scaling and calibration  in  the  nonlinear  case; and 

(c)  possible  i teration  solutions of the  nonlinear  equation. 
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APPENDIX A 

Approximation i n   t h e  Sense of Least Squaxes 
for  a System of Simultaneous  Equations 

Consider the system  of  simultaneous  equations 

N 

or   in   matr ix  form 
A X = B  

If M = N, the  A matrix is square and, i f  it is  nonsingular,  the system 
of equations can be  solved  directly. 

If M > N, the A matrix i s  rectangular,  as  there  are more equations 
than unknowns. This system of equations can be  solved in  the  sense of 
least  squares  in  the  following manner (see p. 8 of Ref. 7 ) . 

Let XJ be a column vector  that  does not   ident ical ly   sat isfy Eq. ( A - l ) ,  
but  gives a residual  error vector  ei i n  

and fo r  a minimum 

M 
+ 

aip( i=l j =1 
a i5Xj  - bi 

M 
= 2 x ai.( 5 ai5T5 - bi) = 0 ( ~ - 5 )  

i=l j =1 



This set of equations  for a minimum of the square  of  the  error  can be 
wr i t ten   in   mat r ix  form as 

2[AT(AX - B)] = 0 
or 

A ~ A X  = A ~ B  

Since A A i s  a square  matrix, symmetric, positive  diagonal  elements, and 
nonsingular, it can be  inverted  to  give 

T 

X = [ATA]"ATB 

as the  solution of the system i n  the  sense of least   squares.  

A s  a simple example, consider  the system 

2x1 + 3x2 = 0 

2x1 - 4x2 = 1 

x, - x2 = 0 

Equation (A-7) gives X, = 8/45 and X2 = - 6/45 with the  residuals 

2 5 14 
45 45 45 

e l = - -  , e 2 = - -  , e 3 = -  Y 

el + e2 + e3  = - 2 2 2 1  
9 

None of the  three  equations  are  satisfied  exactly,  but  the X, and X2 
values  are  the  best  values  in  the  sense of least  squares. Any other 
values of X, and X2 w i l l  give 

e: + e$ + e3 > - 2 1  

9 

It i s  evident t h a t  i f  one or  more of the  equations have  mistakes 
i n  them, these  mistakes w i l l  a f fec t  all the   resu l t s  and  residuals. The 
mistakes or errors  are  spread  out  over a l l  the   resu l t s .  Such an e f fec t  



can occur i f  incmpatible  conditions or restrictions  are  present in the 
system of equations. For example, suppose the  third equation in the 
simple example above is 

looox, - x, = 0.  

Then, there  results from Eq. (A-7) X1 - 4/25,000 and X2 - 4/25. 
Thus the equation  with the  lmge change i s  still approximately satisfied, 
but the  solution is completely changed. 





APPEXDIX B 

Ekraluation of an Integral   in  Fourier  Series  Solution* 

The integral   in  Eq. (5-U) 

2 R 
K,, -I, log ( sin e )sin ne cos me de 

3- + COS e 

can be mi t ten   as  

Now consider  the  integml 

Introduce  the  constant 1/2i  and integrate by parts to   ge t  

Consider the difference form 

qhanks axe due t o  Dr. Keith  Starartson,  Visiting  Professor at 
The  Ohio State  University, Summer 1969, and  Goldsmid Professor of 
Mathematics a d  Joint Head of Mathematics  Department, University of 
London, for this integration. 

. 
""_ "" "" - -- , - -  --- 

- ~" 



Since Io = 0 it follows that 

I 0 = O  y 

I 2 = - 2  y 

Put this resul t   in  Eq. (B-6) in to  Eq. (B-2) and use 2 i  = m + n or 
m - n t o  get 

vhere m + n i s  even. If m = n, Eq. (B-2) gives 

m 
1 K,, = - - , m = n  

For m + n odd, sin (m+n)e i s  even in  the  interval 0 t o  ‘IC. Since the 
log term in Eq. (B-2) i s  odd on the  interval 0 t o  ‘IC, the  value of the 
integral i s  zero for  m + n odd, or 

K,, = 0 for m -k n odd 03-91 
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-0000602 -0.00822 -0.01181 -0.01831 

0.18405 0-10091 0.1855'7  0.02533 
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-0.01068 -0.00760 -0.00542 -0.00412 
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-0.00048 
-0000226 
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-0.00123 
~.O.00030 
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-0000100 
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-0,00498 
-0.00066 
-0.00016 

-0000061 -0.00075 -0.00092 
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0.07071 0 - 3 0 3 6 6  0.05066 

-0.00101 -0.00064 -0.00069 
-0.00021. -0.00008 

-0oOO564 -0.00406 -0.00305 

-0.00028 -0000035 -0.00043 
-0.00128 -0.00169  -0.00229 
-0.10091 0.16196 0.15198 
-0.00329 -0.00232  -0.00172 
-0.00054 -0.00045 -0.00037 
-0000011 -0.00004 

0.0 0.0 0.0 0.0 
0.0 0.0 0. Q 0.0 
0-0 0.0 0.0 0-0 
P.*.O. . . . . 0.0 0.0 000 
0.0 00 0 0-0 0.0 
0 0 0 . .  . 0.0 0.0 

. O.O.0020 OoOOO25 
0000082 0.00103 
". OoOO8?_7_-. 0.-.01682 
OoOO83O 0.00494 

.. . 0.00080 . 0000064 
OoOOO18 0.00012 

.." ~ . . . . . .  

0.00038 Om00047 
. _  QcQQ15.O Q.QQLB7 

0.01339 0,02523 
0.02491 0,01316 
0.00177 O o O O I . 4 1  

0,98037 
0.00026 

0.00030 0.00037 
0.00131  0.00172 
0010122 -0.15198 
0.00325 0.00229 
0.00052 0.00043 
0000004 

0.00057 0.00069 
0.00236 0*00305 
0-11809 -0.05066 
OoOO813 0.00549 
Oo00114 0.00092 
0.00009 



ROW 2 4  
Q.0001~: . OoO0.030. ,0.00043 0.00054 0.00067 0.00081 0.00098 
0.00117 0.00141-  0.00171 0.00208 0.00257 0,00322 0.00412 

- .  . .  0.005+2. 0.00740.  0,01068 0.01673 0.03027 0.12652 -0.03377 
. .  -0020244.-0.20182  -0.06382 0.12457 0.02961 0.01626 0.01030 

' , Oe00708 Om00514 0.00387 0.00299 0.00236 0.00188 0.00151 
0.00122. 0.00098  0.00078 0.00060 0.00041  0,00015 

.,ROW 25. . . 
0.00014 0;00038 0.00054 Oa00069 0.00085 0-00103 O.OOL23 

...,. Q.00147  Q'a901.77 0,00213 0.00258 0.00316 0.00394 0.00499 
0.00650  0.00877 0,01246 0.01912 0.03364 0.13158 -0,02533 

" -Q.1$557.-0.10091 -0,18405 -0.06534 0.12832 0.03251 0.01831 
0.01181 0.00822 0.00602 0100456 0.00353 0.00278 0000222 

-.- -- O,..QO177.. 0.00142 0.00112 0.00085 0.00059 OoOOOZL 
ROW 2 6  

0.00017 0.00044 0.00065 0.00082 0.00101 0.00122 Om00146 
0.00174 0.00208 0.00249 0.00301 0-00367 0.00454 0.00572 
0.00739 0.00987 0.01384 0.02091 0.03604 0,13496 -0.02026 

-0,17713 -0.08409 --0.08366 -0,17440  -0.07019 0.13004 0 . 0 3 4 3 3  
0,01968 0.01285 -0.00903 0.00664 0.00505 0.00392 0.00308 
0.00244  0.00193 0.00151 0.00115 0.00079  0.00028 

ROW 27 
0.00019 0.00053 0.00074 0 .00095  0.00116 0 .00139  0.00166 
0.00198 0.00236 0--00281 0.00339 0.00411 0.00506 0.00634 
o.ooai3 0.01077 0,01495 0.02231 0.03784 0.13737 -0.01689 

" ..-Os17207 -0oQ7568 -0 .06693 -0.07474  -0.16781 -0.07666 0,13044 
0,03542  -0.02056  0,01354  0.00957  0.00707 0.00537 0.00416 
0,00325 0.00255  0.00198 0.00149 0.001.02 Om00036 

ROW 2 8  
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0.00427 0.00330 0.00254  0.00189 0.00129 0.00045 

ROW 2 9  
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APPENDIX D 

Computer Program for  hversion  Integral  
Method (Cassegrain Mirror) 

The computer  program l i s t ed  here i s  a Fortran program mi t t en   fo r  
the IEN SYSTEM 360.~5~ The program solves  the  integral  equation for the 
Foucault  Test  using the  hversion  integral method of solution  for  the 
case of a mirror v i th  a central.  hole, All operation  are performed in 
double precision (approximately 16 decimal places), 

The m a i n  program reads i n  M and MODE under a (215) format, M i s  
the number of  evenly  spaced points on the mirror and m u s t  be  even. The 
end points and points on the edge  of the  hole axe among these M points. 
MODE detercmines  which  method of numerical integration is  t o  be used 
(NODE = 1, trapezoid  rule; NODE = 2, Simpson s rule; MODE = 3, 5"goint 
rule) Also in the main  program R, the radius of the  central  hole, is 
read i n  under a (E 12.8) format Next the  subroutine GMAT i s  called. 
GMAT generates  the G matrix  vhich i s  s tored   in  G(1, J) The subroutine 
GMAT caU.s subroutine AMAT, which calculates  the A ( I ,  J) matrix 
(Eq. 10-36) e AMAT in   tu rn   ca l l s  the subroutine HMAT, -cThich calculates 
the numerical integration matrix H ( 1 )   H ( 1 )  is used i n  A(1, J) a d  
A(1,  J) is used i n  calculating G(1 ,  J), Eqs, (10-35), (10-33), (10-37), 
and (10-40) Control  then  returns to   t he  main  program  where NRUN, the 
number of cases t o  be solved, is read i n  under an (15) format. Next the 
subroutine CAPF i s  called. CAPF calculates  the light intensity  differ-, 
ence F(x) from a functional  representation at the M points on the Mirror 
(Eqs 10-42, 10-44, 10-50, 10-51) , The M values  of  F(x) m e  stored in 
FBIG( I) in   the  main  program and F( I) in subroutine CAPF , Subroutine 
D W R D  then matrix multiplies F in to  FBIG to   re turn  FLIT, Eq, (10-39) . 
The matrix FLIT contains M values of the  surface  error f (x) c&lculated 
at the same points as F(x). DGMPRD is  an external IBN subroutine con- 
ta ined  in  the Scientific-Subroutine Package, If the '%hump case" for  
f(x) i s  t o  be run, as in case 4 of this l is t ing,  A and B, the  location 
and size of the hump, m u s t  be  given  values i n  CAPF. If F(x) is  t o  be 
inputed  data  rather  then  functionally  represented,  then CAPF  may be 
replaced by a READ statement 
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